Skip to content
eoPortal

Satellite Missions Catalogue

TESS (Transiting Exoplanet Survey Satellite)

Last updated:Mar 31, 2016

Non-EO

|

NASA

|

Astronomy and Telescopes

Quick facts

Overview

Mission typeNon-EO
AgencyNASA
Launch date18 Apr 2018

TESS (Transiting Exoplanet Survey Satellite)

Spacecraft    Launch    Mission Status    Sensor Complement    References 

 

TESS is a space telescope in NASA's Explorer program, designed to search for extrasolar planets using the transit method. The primary mission objective for TESS is to survey the brightest stars near the Earth for transiting exoplanets over a two-year period. The TESS project will use an array of wide-field cameras to perform an all-sky survey. It will scan nearby stars for exoplanets. 1) 2) 3)

In the first-ever spaceborne all-sky transit survey, TESS will identify planets ranging from Earth-sized to gas giants, orbiting a wide range of stellar types and orbital distances. The principal goal of the TESS mission is to detect small planets with bright host stars in the solar neighborhood, so that detailed characterizations of the planets and their atmospheres can be performed.

TESS will monitor the brightnesses of more than 200,000 stars during a two year mission, searching for temporary drops in brightness caused by planetary transits. Transits occur when a planet's orbit carries it directly in front of its parent star as viewed from Earth. TESS is expected to catalog more than 1,500 transiting exoplanet candidates, including a sample of ~500 Earth-sized and ‘Super Earth’ planets, with radii less than twice that of the Earth. TESS will detect small rock-and-ice planets orbiting a diverse range of stellar types and covering a wide span of orbital periods, including rocky worlds in the habitable zones of their host stars.

The lead institution for TESS is MIT (Massachusetts Institute of Technology), with George Ricker as PI (Principal Investigator). The MIT/LL (Lincoln Laboratory) is responsible for the cameras, including the lens assemblies, detector assemblies, lens hoods, and camera mount. NASA/GSFC (Goddard Space Flight Center) provides project management, systems engineering, and safety and mission assurance. Orbital ATK (OA) builds and operates the spacecraft. The mission is operated from the OA Mission Operations Center.

The TESS Science Center, which analyzes the science data and organizes the co-investigators, collaborators, and working groups (with members from many institutions) is a partnership among MIT's Physics Department and Kavli Institute for Astrophysics and Space Research, the SAO (Smithsonian Astrophysical Observatory), and the NASA Ames Research Center. The raw and processed data are archived at the Mikulski Archive for Space Telescopes, at the Space Telescope Science Institute.

Figure 1: This animation shows how a dip in the observed brightness of a star may indicate the presence of a planet passing in front of it, an occurrence known as a transit (image credit: NASA/GSFC)
Figure 1: This animation shows how a dip in the observed brightness of a star may indicate the presence of a planet passing in front of it, an occurrence known as a transit (image credit: NASA/GSFC)

Some background: TESS is a NASA-based mission, selected in 2013 as an astrophysics mission in the Explorers Program. TESS has a long history, beginning as a small, privately funded mission in 2006. It started with financial backing from private companies, including Google, the Kavli Foundation, and donors at MIT. This all changed in 2008, when MIT proposed TESS as an official NASA astrophysics mission, re-structuring it as a SMEX (Small Explorer) Class Mission. After not being selected in this competitive process for NASA resources, TESS proposed again in 2010 as a NASA Explorer (EX) Class Mission. TESS is the first of this new classification of Explorer missions. In 2013, TESS was successful in the proposal process and NASA began the development of the project. MIT's Kavli Institute of Technology for Astrophysics (MKI) has remained as an original partner in the current TESS mission, joining NASA in the next search for new worlds. 4)

TESS will concentrate on stars less than 300 light-years away and 30-100 times brighter than those surveyed by the Kepler satellite; thus,TESS planets should be far easier to characterize with follow-up observations. The brightness of these target stars will allow researchers to use spectroscopy, the study of the absorption and emission of light, to determine a planet’s mass, density and atmospheric composition. Water, and other key molecules, in its atmosphere can give us hints about a planets’ capacity to harbor life. These follow-up observations will provide refined measurements of the planet masses, sizes, densities, and atmospheric properties. 5)

TESS will provide prime targets for further, more detailed characterization with the James Webb Space Telescope (JWST), as well as other large ground-based and space-based telescopes of the future. TESS's legacy will be a catalog of the nearest and brightest stars hosting transiting exoplanets, which will comprise the most favorable targets for detailed investigations in the coming decades.

The Kepler project has provided ground-breaking new insights into the population of exoplanets in our galaxies; among the discoveries made using data from Kepler is the fact that the most common members of the exoplanet family are Earths and Super-Earths. However, the majority of exoplanets found by Kepler orbit faraway, faint stars. This, combined with the relatively small size of Earths and Super-Earths, means that there is currently a dearth of such planets that can be characterized with follow-up observations.

“TESS is opening a door for a whole new kind of study,” said Stephen Rinehart, TESS project scientist at NASA/GSFC (Goddard Space Flight Center) in Greenbelt, Maryland, which manages the mission. “We’re going to be able study individual planets and start talking about the differences between planets. The targets TESS finds are going to be fantastic subjects for research for decades to come. It’s the beginning of a new era of exoplanet research.”

Through the TESS Guest Investigator Program, the worldwide scientific community will be able to participate in investigations outside of TESS’s core mission, enhancing and maximizing the science return from the mission in areas ranging from exoplanet characterization to stellar astrophysics and solar system science (Ref. 6).

“I don’t think we know everything TESS is going to accomplish,” Rinehart said. “To me, the most exciting part of any mission is the unexpected result, the one that nobody saw coming.”

TESS is designed to:

• Focus on Earth and Super-Earth size planets

• Cover 400 X larger sky area than Kepler

• Span stellar spectral types of F5 to M5

Transiting exoplanets allow the project to observe the following for those planets that transit nearby bright stars:

• Fundamental properties: mass, radius, orbit

• Dynamics: planet-planet interactions, mutual inclinations, moons, tides

• Atmospheric composition + structure: transmission spectrum, emission spectrum, albedo, phase function, clouds, winds.

Figure 2: Left: Sizes and orbital periods of planets with host stars brighter than J = 10. Right: Currently known planets, including those from the Kepler and CoRoT missions as well as ground-based surveys. Figure on the right now including the simulated population of TESS exoplanet detections (image credit: NASA)
Figure 2: Left: Sizes and orbital periods of planets with host stars brighter than J = 10. Right: Currently known planets, including those from the Kepler and CoRoT missions as well as ground-based surveys. Figure on the right now including the simulated population of TESS exoplanet detections (image credit: NASA)

TESS will tile the sky with 26 observation sectors:

• At least 27 days staring at each 24° x 96° sector

• Brightest 100,000 stars at 1-minute cadence

• Full frame images with 30-minute cadence

• Map Northern hemisphere in first year

• Map Southern hemisphere in second year

• Sectors overlap at ecliptic poles for sensitivity to smaller and longer period planets in JWST CVZ (Continuous Viewing Zone).

Figure 3: Illustration of the TESS (Transiting Exoplanet Survey Telescope) in front of a lava planet orbiting its host star. TESS will identify thousands of potential new planets for further study and observation (image credit: NASA/GSFC) 6)
Figure 3: Illustration of the TESS (Transiting Exoplanet Survey Telescope) in front of a lava planet orbiting its host star. TESS will identify thousands of potential new planets for further study and observation (image credit: NASA/GSFC) 6)

 

 


 

Spacecraft

The TESS mission is based on Orbital's LEOStar-2 platform, a flexible, high-performance spacecraft for space and Earth science, remote sensing and other applications. LEOStar-2 can accommodate various instrument interfaces, deliver up to 2 kW orbit average payload power, and support payloads up to 500 kg. Performance options include redundancy, propulsion capability, high data rate communications, and high-agility/high-accuracy pointing. TESS will be the eighth LEOStar-2 based spacecraft built for NASA. Previous missions include SORCE, GALEX, AIM, NuSTAR and the OCO-2 spacecraft.

Figure 4: Illustration of Orbital ATK LEOStar-2 minisatellite (image credit: Orbital ATK)
Figure 4: Illustration of Orbital ATK LEOStar-2 minisatellite (image credit: Orbital ATK)

The LEOStar-2 bus has a three-axis controlled, zero-momentum attitude control system, and two deployed solar array wings. The total observatory power draw is estimated to be 290 W, and the solar arrays are capable of producing 415 W. To achieve fine pointing, the spacecraft uses four reaction wheels and high-precision quaternions produced by the science cameras. The transmitter has a body-fixed high-gain antenna with a diameter of 0.7 m, a power of 2 W and a data rate of 100 Mbit/s. This is sufficient to downlink the science data during 4 hr intervals at each perigee.

Spacecraft bus

Heritage Orbital LEOStar-2 spacecraft bus

Launch mass

325 kg

Spacecraft size (deployed)

3.9 m x 1.2 m x 1.5 m

Redundancy

Selective

Solar arrays

400 W (EOL), Two wing solar array, fixed and articulating modes

Stabilization

3-axis zero momentum bias via 4 hydrazine thrusters, four wheel fine-pointing ACS (Attitude Control Subsystem)

Pointing accuracy

3.2 arcsec control, 2.7 arcsec knowledge

Propulsion subsystem

Mono-propellant propulsion subsystem

TCS (Thermal Control Subsystem)

Passive thermal control

Mission life

2 years

RF communications

Ka-band 100 Mbit/s science downlink

Table 1: Overview of spacecraft parameters 7)

DHU (Data Handling Unit): The DHU is a Space Micro Image Processing Computer (IPC-7000) which consists of six boards: an IPC (Image Processing Computer), which contains two Virtex-7 FPGAs (Field Programmable Gate Arrays) that serve as interfaces to the four cameras and perform high-speed data processing; a Proton 400 k single board computer, which is responsible for commanding, communicating with the spacecraft master avionics unit, and interfacing with the Ka-band transmitter; two 192 GB SSB (Solid-State Buffer) cards for mass data storage; an analog I/O power switch board to control instrument power; and a power supply board for the DHU.

The CCDs (Charge Coupled Devices) produce a continuous stream of images with an exposure time of 2 seconds. These are received by the FPGAs on the IPC, and summed into consecutive groups of 60, giving an effective exposure time of 2 minutes. During science operations, the DHU performs real-time processing of data from the four cameras, converting CCD images into the data products required for ground post-processing. A primary data product is a collection of subarrays (nominally 10 x 10 pixels) centered on preselected target stars. The Proton400 k extracts these subarrays from each 2 min summed image, compresses them and stores them in the SSB prior to encapsulation as CCSDS packets for the Ka-band transmitter. Full frame images are also stacked every 30 minutes and stored in the SSB. Data from the SSB are downlinked every 13.7 days at perigee.

At perigee, science operations are interrupted for no more than 16 hours to point TESS 's antenna toward Earth, downlink data, and resume observing. This includes a nominal 4 hr period for Ka-band science data downlink using NASA's DSN (Deep Space Network). In addition, momentum unloading is occasionally needed due to the ~1.5 N m of angular momentum build-up induced by solar radiation pressure. For this purpose TESS uses its hydrazine thrusters.

Figure 5: Left: Diagram illustrating the orientations of the four TESS cameras, lens hoods, and mounting platform. Right: Artist's conception of the TESS spacecraft and payload (image credit: Orbital ATK, TESS Team)
Figure 5: Left: Diagram illustrating the orientations of the four TESS cameras, lens hoods, and mounting platform. Right: Artist's conception of the TESS spacecraft and payload (image credit: Orbital ATK, TESS Team)

 

Development Status

• February 15, 2018: NASA's TESS satellite has arrived in Florida to begin preparations for launch. TESS was delivered Feb. 12 aboard a truck from Orbital ATK in Dulles, Virginia, where it spent 2017 being assembled and tested. Over the next month, the spacecraft will be prepped for launch at Kennedy's Payload Hazardous Servicing Facility (PHSF). 8)

Figure 6: TESS arrives at NASA’s Kennedy Space Center, where it will undergo final preparations for launch. Launch is scheduled for no earlier than April 16, pending range approval (image credit: NASA’s Kennedy Space Center)
Figure 6: TESS arrives at NASA’s Kennedy Space Center, where it will undergo final preparations for launch. Launch is scheduled for no earlier than April 16, pending range approval (image credit: NASA’s Kennedy Space Center)

 

Launch

The TESS spacecraft was launched on 18 April 2018 (22:51 UTC) from the Cape Canaveral Air Force Station in Florida, SLC-40 (Space Launch Complex-40). The launch provider was SpaceX using the Falcon-9 V1.1 launch vehicle. 9) 10) 11) 12) 13)

Following stage separation, SpaceX successfully landed Falcon 9’s first stage on the “Of Course I Still Love You” droneship in the Atlantic Ocean. — After TESS was released the satellite deployed its solar arrays, and it will take 60 days for the satellite to attain its proper orbit.

Orbit: HEO (Highly Elliptical Orbit) with a nominal perigee of 17 RE (Earth radii) equivalent to 108,000 km, and a nominal apogee of 59 RE or 373,000 km, inclination = 28.5º, period of 13.7 days in 2:1 resonance with the Moon's orbit.

The orbit remains above the Earth's radiation belts, leading to a relatively low-radiation environment with a mission total ionizing dose of <1 krad. The nearly constant thermal environment ensures that the CCDs will operate near -75ºC, with temperature variations <0.1ºC /hr for 90% of the orbit, and <2ºC/hr throughout the entire orbit (Ref. 3).

This orbit can be reached efficiently using a small supplemental propulsion system (ΔV ~3 km/s) augmented by a lunar gravity assist. The specific path to the orbit will depend on the launch date and launch vehicle. In a nominal scenario (illustrated in Figure 7), TESS is launched from Cape Canaveral into a parking orbit with an equatorial inclination of 28.5º. The apogee is raised to 400,000 km after two additional burns by the spacecraft hydrazine system, one at perigee of the first phasing orbit, and another at perigee of the second phasing orbit. An adjustment is made at third perigee, before a lunar flyby raises the ecliptic inclination to about 40º. A final period-adjust maneuver establishes the desired apogee and the 13.7 day period. The final orbit is achieved about 60 days after launch, and science operations begin soon afterward.

The orbital period and semimajor axis are relatively constant, with long-term exchanges of eccentricity and inclination over a period of order 8-12 years (driven by a Kozai-like mechanism) 14). There are also short-term oscillations with a period of six months caused by solar perturbations ( Figure 8). The orbit is stable on the time scale of decades, or more, and requires no propulsion for station-keeping. Table 2 lists a number of advantages of this type of orbit for TESS.

Figure 7: Maneuvers and scenario for achieving the TESS mission orbit. PLEP (Post Lunar-Encounter Perigee) and PLEA (Post Lunar-Encounter Apogee), image credit: TESS Team

Figure 7: Maneuvers and scenario for achieving the TESS mission orbit. PLEP (Post Lunar-Encounter Perigee) and PLEA (Post Lunar-Encounter Apogee), image credit: TESS Team

 

Characteristics of the TESS spacecraft orbit and comparisons to a low-Earth orbit

• Extended and unbroken observations: >300 hr orbit-1

• Thermal stability: <0.1ºC hr-1 (passive control)

• Earth/Moon stray light: ~106 times lower than in low-Earth orbit

• Low radiation levels: no South Atlantic anomaly or outer belt electrons

• Frequent launch windows: 20 days per lunation

• High data rates at perigee: ~100 Mbit s-1

• Excellent pointing stability: no drag or gravity gradient torques

• Simple operations: single 4 hr downlink & repoint every 2 weeks

• Long lifetime: several decades above GEO (>6.6 RE)

Figure 8: Calculated time variations in the elements of the nominal TESS mission orbit. The units of each curve are specified in the legend; AOP (Argument of Perigee), GEO (Geosynchronous Earth Orbit), image credit: TESS Team
Figure 8: Calculated time variations in the elements of the nominal TESS mission orbit. The units of each curve are specified in the legend; AOP (Argument of Perigee), GEO (Geosynchronous Earth Orbit), image credit: TESS Team

 

 


 

Mission Status

• June 15, 2022: An international scientific collaboration, in which the Instituto de Astrofísica de Canarias (IAC) participates, has discovered two new super-Earths orbiting a bright red dwarf star only 33 light-years away. Both objects are among the closest-known rocky planets yet found outside our solar system. The results are presented today at the American Astronomical Society (AAS) meeting in Pasadena (California, USA). 15)

Figure 9: Artist's impression of a system with two super-earths (image credit: NASA/JPL-Caltech)
Figure 9: Artist's impression of a system with two super-earths (image credit: NASA/JPL-Caltech)

- Two new exoplanets, HD 260655 b and HD 260655 c, have been detected using NASA's Transiting Exoplanet Survey Satellite (TESS), a space telescope designed to look for planets in orbit around nearby bright stars using the transit method. This method measures the minute decrease of the brightness of a star as the planet crosses the stellar disk as seen from the telescope.

- Research has determined that both planets are super-Earths, terrestrial worlds like ours, only bigger. Planet b is about 1.2 times as big around as Earth, planet c 1.5 times. In this case, however, neither world is likely to support life. The temperature on planet b, nearest to the star, is estimated at 435 °C,, planet c 284 °C.

- At 33 light-years, they are relatively close to us, and their star, though smaller than ours, is among the brightest in its class, in what is called the solar neighbourhood, and its red dwarf star, though smaller than ours, is among the brightest in its class. This makes the two planets prime candidates for atmospheric investigation.

Figure 10: Illustration of two newly discovered, rocky "super-Earths" that could be ideal for follow-up atmospheric observations (image credit: NASA/JPL-Caltech)
Figure 10: Illustration of two newly discovered, rocky "super-Earths" that could be ideal for follow-up atmospheric observations (image credit: NASA/JPL-Caltech)

- According to research, both planets rate in the top 10 candidates for atmospheric characterization among all terrestrial exoplanets so far discovered. “That places them in the same category as one of the most famous planetary systems: the seven roughly Earth-sized planets around a star called TRAPPIST-1”, says Rafael Luque, researcher at the of the Institute of Astrophysics of Andalusia (IAA-CSIC) and also of the University of Chicago.

- These and other rocky exoplanets are already on the list of observational targets for the James Webb Space Telescope, soon to deliver its first science images. This telescope could capture data from the star’s light shining through these planets’ atmospheres. Such light can be spread into a spectrum and reveal the fingerprints of molecules within the atmosphere itself, which can detect water, carbon and other components essential for life.

- To confirm the existence of the two new planets, in addition to the observations made by TESS, the scientific team has also used ground-based instrumentation, such as the CARMENES spectrographs at Calar Alto Observatory (Almeria, Spain) and HIRES at the W. M. Keck Observatory (Mauna Kea, Hawaii). These instruments measured the “wobble” of the star, caused by the gravitational tugs from orbiting planets (radial velocity), which yields the planets’ mass. Combining these measurements, it has also been possible to determine the density and confirm that they are rocky worlds.

- Although scientists do not yet know whether either of the two super-Earths possesses an atmosphere and, if so, what it is made up of, the joint data from the different observational studies suggest that they are not extended, hydrogen atmospheres. But for the scientific team, it is only an intriguing clue that encourages further research. “Learning more about the atmospheres of rocky planets will help scientists understand the formation and development of worlds like our own” concludes Luque. 16)

• March 21, 2022: The count of confirmed exoplanets just ticked past the 5,000 mark, representing a 30-year journey of discovery led by NASA space telescopes. 17)

Figure 11: What do planets outside our solar system, or exoplanets, look like? A variety of possibilities are shown in this illustration. Scientists discovered the first exoplanets in the 1990s. As of 2022, the tally stands at just over 5,000 confirmed exoplanets (image credit: NASA/JPL-Caltech)
Figure 11: What do planets outside our solar system, or exoplanets, look like? A variety of possibilities are shown in this illustration. Scientists discovered the first exoplanets in the 1990s. As of 2022, the tally stands at just over 5,000 confirmed exoplanets (image credit: NASA/JPL-Caltech)

- Not so long ago, we lived in a universe with only a small number of known planets, all of them orbiting our Sun. But a new raft of discoveries marks a scientific high point: More than 5,000 planets are now confirmed to exist beyond our solar system.

- The planetary odometer turned on March 21, with the latest batch of 65 exoplanets – planets outside our immediate solar family – added to the NASA Exoplanet Archive. The archive records exoplanet discoveries that appear in peer-reviewed, scientific papers, and that have been confirmed using multiple detection methods or by analytical techniques.

- The 5,000-plus planets found so far include small, rocky worlds like Earth, gas giants many times larger than Jupiter, and “hot Jupiters” in scorchingly close orbits around their stars. There are “super-Earths,” which are possible rocky worlds bigger than our own, and “mini-Neptunes,” smaller versions of our system’s Neptune. Add to the mix planets orbiting two stars at once and planets stubbornly orbiting the collapsed remnants of dead stars.

 
Figure 12: Astronomers have now confirmed more than 5,000 exoplanets, or planets beyond our solar system. That’s just a fraction of the likely hundreds of billions in our galaxy. The cones of exoplanet discovery radiate out from planet Earth, like spokes on a wheel. Many more discoveries await (video credit: NASA/JPL-Caltech)

- “It’s not just a number,” said Jessie Christiansen, science lead for the archive and a research scientist with the NASA Exoplanet Science Institute at Caltech in Pasadena. “Each one of them is a new world, a brand-new planet. I get excited about every one because we don’t know anything about them.”

- We do know this: Our galaxy likely holds hundreds of billions of such planets. The steady drumbeat of discovery began in 1992 with strange new worlds orbiting an even stranger star. It was a type of neutron star known as a pulsar, a rapidly spinning stellar corpse that pulses with millisecond bursts of searing radiation. Measuring slight changes in the timing of the pulses allowed scientists to reveal planets in orbit around the pulsar.

- Finding just three planets around this spinning star essentially opened the floodgates, said Alexander Wolszczan, the lead author on the paper that, 30 years ago, unveiled the first planets to be confirmed outside our solar system.

- “If you can find planets around a neutron star, planets have to be basically everywhere,” Wolszczan said. “The planet production process has to be very robust.”

- Wolszczan, who still searches for exoplanets as a professor at Penn State, says we’re opening an era of discovery that will go beyond simply adding new planets to the list. The Transiting Exoplanet Survey Satellite (TESS), launched in 2018, continues to make new exoplanet discoveries. But soon powerful next-generation telescopes and their highly sensitive instruments, starting with the recently launched James Webb Space Telescope, will capture light from the atmospheres of exoplanets, reading which gases are present to potentially identify tell-tale signs of habitable conditions.

- The Nancy Grace Roman Space Telescope, expected to launch in 2027, will make new exoplanet discoveries using a variety of methods. The ESA (European Space Agency) mission ARIEL, launching in 2029, will observe exoplanet atmospheres; a piece of NASA technology aboard, called CASE, will help zero in on exoplanet clouds and hazes.

- “To my thinking, it is inevitable that we’ll find some kind of life somewhere – most likely of some primitive kind,” Wolszczan said. The close connection between the chemistry of life on Earth and chemistry found throughout the universe, as well as the detection of widespread organic molecules, suggests detection of life itself is only a matter of time, he added.

 
Figure 13: In this animation, exoplanets are represented by musical notes played across decades of discovery. Circles show location and size of orbit, while their color indicates the detection method. Lower notes mean longer orbits, higher notes shorter orbits [video credit: NASA/JPL-Caltech/SYSTEM Sounds (M. Russo and A. Santaguida)]

How to Find Other Worlds

- The picture didn’t always look so bright. The first planet detected around a Sun-like star, in 1995, turned out to be a hot Jupiter: a gas giant about half the mass of our own Jupiter in an extremely close, four-day orbit around its star. A year on this planet, in other words, lasts only four days.

- More such planets appeared in the data from ground-based telescopes once astronomers learned to recognize them – first dozens, then hundreds. They were found using the “wobble” method: tracking slight back-and-forth motions of a star, caused by gravitational tugs from orbiting planets. But still, nothing looked likely to be habitable.

- Finding small, rocky worlds more like our own required the next big leap in exoplanet-hunting technology: the “transit” method. Astronomer William Borucki came up with the idea of attaching extremely sensitive light detectors to a telescope, then launching it into space. The telescope would stare for years at a field of more than 170,000 stars, searching for tiny dips in starlight when a planet crossed a star’s face.

- That idea was realized in the Kepler Space Telescope.

- Borucki, principal investigator of the now-retired Kepler mission, says its launch in 2009 opened a new window on the universe.

- “I get a real feeling of satisfaction, and really of awe at what’s out there,” he said. “None of us expected this enormous variety of planetary systems and stars. It’s just amazing.”

Figure 14: The more than 5,000 exoplanets confirmed in our galaxy so far include a variety of types – some that are similar to planets in our solar system, others vastly different. Among these are a mysterious variety known as “super-Earths” because they are larger than our world and possibly rocky (image credit: NASA/JPL-Caltech)
Figure 14: The more than 5,000 exoplanets confirmed in our galaxy so far include a variety of types – some that are similar to planets in our solar system, others vastly different. Among these are a mysterious variety known as “super-Earths” because they are larger than our world and possibly rocky (image credit: NASA/JPL-Caltech)

• January 20, 2022: The catalog of planet candidates found with NASA’s Transiting Exoplanet Survey Satellite (TESS) recently passed 5,000 TOIs (TESS Objects of Interest). - Catalog of planet candidates nearly doubles in size during 2020-21. 18)

Figure 15: A map of the sky is now crowded with over 5,000 exoplanet candidates from NASA’s TESS mission. The TESS Science Office at MIT released the most recent batch of TESS Objects of Interest (large orange points on the map) on Dec. 21, boosting the catalog to this 5,000-count milestone (Credits: Image courtesy of NASA/MIT/TESS)
Figure 15: A map of the sky is now crowded with over 5,000 exoplanet candidates from NASA’s TESS mission. The TESS Science Office at MIT released the most recent batch of TESS Objects of Interest (large orange points on the map) on Dec. 21, boosting the catalog to this 5,000-count milestone (Credits: Image courtesy of NASA/MIT/TESS)

- The catalog has been growing steadily since the start of the mission in 2018, and the batch of TOIs boosting the catalog to over 5,000 come mostly from the Faint Star Search led by MIT postdoc Michelle Kunimoto.

- Kunimoto reflects, “This time last year, TESS had found just over 2,400 TOIs. Today, TESS has reached more than twice that number — a huge testament to the mission and all the teams scouring the data for new planets. I’m excited to see thousands more in the years to come!”

- Now in its extended mission, TESS is observing the Northern Hemisphere and ecliptic plane, including regions of the sky previously observed by the Kepler and K2 missions. The TOIs added in late December are from the third year of the TESS mission, which ran from July 2020 to June 2021. TESS re-observed the sky visible in the Earth’s Southern Hemisphere, revisiting stars it had first observed at the mission’s start in 2018.

- TOI manager Katharine Hesse remarks, “With data from the first year of the extended mission, we have found dozens of additional candidates to TOIs found during the prime mission. I am excited to see how many multi-planet systems we can find during the rest of the extended mission and in upcoming years with TESS.” Planned extensions of the TESS mission to 2025 and beyond should unveil many more new planet candidates.

- Discovering more planet candidates and adding them to the TESS Objects of Interest Catalog is the first step. In the coming months, astronomers around the world will study each of these TOIs to confirm whether they are bona fide planets, and the catalog of confirmed exoplanets from the TESS mission (175 as of Dec. 20) will continue to grow.

- TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center. Additional partners include Northrop Grumman, based in Falls Church, Virginia; NASA’s Ames Research Center in California’s Silicon Valley; the Center for Astrophysics | Harvard and Smithsonian in Cambridge, Massachusetts; MIT’s Lincoln Laboratory; and the Space Telescope Science Institute in Baltimore. More than a dozen universities, research institutes, and observatories worldwide are participants in the mission.

• January 13, 2022: Three newly-discovered planets have been orbiting dangerously close to stars nearing the end of their lives. 19)

- Out of the thousands of extrasolar planets found so far, these three gas giant planets first detected by the NASA TESS (Transiting Exoplanet Survey Satellite) Mission, have some of the shortest-period orbits around subgiant or giant stars. One of the planets, TOI-2337b, will be consumed by its host star in less than 1 million years, sooner than any other currently known planet.

Figure 16: An artist’s rendition of what a planetary system similar to TOI-2337b, TOI-4329b, and TOI-2669b might look like, where a hot Jupiter-like exoplanet orbits an evolved, dying star (image credit: Karen Teramura/University of Hawai'i Institute for Astronomy)
Figure 16: An artist’s rendition of what a planetary system similar to TOI-2337b, TOI-4329b, and TOI-2669b might look like, where a hot Jupiter-like exoplanet orbits an evolved, dying star (image credit: Karen Teramura/University of Hawai'i Institute for Astronomy)

- “These discoveries are crucial to understanding a new frontier in exoplanet studies: how planetary systems evolve over time,” explained lead author Samuel Grunblatt, a postdoctoral fellow at the American Museum of Natural History and the Flatiron Institute in New York City. Grunblatt, who earned his PhD from the University of Hawai'i Institute for Astronomy (UH IfA), added that “these observations offer new windows into planets nearing the end of their lives, before their host stars swallow them up.”

- Grunblatt announced the discovery and confirmation of these planets – TOI-2337b, TOI-4329b, and TOI-2669b – at an American Astronomical Society press conference today; the study has been accepted for publication in the Astronomical Journal and is available in preprint format on arXiv.org.

- The researchers estimate that the planets have masses between 0.5 and 1.7 times Jupiter’s mass, and sizes that range from slightly smaller to more than 1.6 times the size of Jupiter. They also span a wide range of densities, from styrofoam-like to three times denser than water, implying a wide variety of origins.

- These three planets are believed to be just the tip of the iceberg. “We expect to find tens to hundreds of these evolved transiting planet systems with TESS, providing new details on how planets interact with each other, inflate, and migrate around stars, including those like our Sun,” said Nick Saunders, a graduate student at UH IfA and co-author of the study.

- The planets were first found in NASA TESS Mission full-frame image data taken in 2018 and 2019. Grunblatt and his collaborators identified the candidate planets in TESS data, and then used W. M. Keck Observatory’s High-Resolution Echelle Spectrometer (HIRES) on Maunakea, Hawai'i to confirm the existence of the three planets.

- “The Keck observations of these planetary systems are critical to understanding their origins, helping reveal the fate of solar systems like our own,” said UH IfA Astronomer Daniel Huber, who co-authored the study.

- Current models of planet dynamics suggest that planets should spiral in toward their host stars as the stars evolve over time, particularly in the last 10 percent of the star’s lifetime. This process also heats the planets, potentially causing their atmospheres to inflate. However, this stellar evolution will also cause the orbits of planets around the host star to come closer to one another, increasing the likelihood that some of them will collide, or even destabilize the entire planetary system.

- The wide variety of planet densities found in the study suggests that these planetary systems have been shaped through chaotic planet-to-planet interactions. This could also have resulted in unpredictable heating rates and timescales for these planets, giving them the wide range in densities we observe today.

- Future observations of one of these systems, TOI-4329, with the recently-launched James Webb Space Telescope could reveal evidence for water or carbon dioxide in the planet’s atmosphere. If these molecules are seen, the data would provide constraints on where these planets formed, and what sort of interactions had to occur to produce the planetary orbits we see today.

- Continued monitoring of these systems with the NASA TESS telescope will constrain the rate at which these planets are spiraling into their host stars. So far, no clear signal of orbital decay has been observed in any of the systems, but a longer baseline of observations with the TESS Extended Missions will provide much tighter constraints on planet in-spiral than are currently possible, revealing how strongly planetary systems are affected by stellar evolution.

- The team hopes that this ‘planetary archeology’ will help us to understand the past, present, and future of planetary systems, moving us one step closer to answering the question: “Are we alone?”

About HIRES

- The High-Resolution Echelle Spectrometer (HIRES) produces spectra of single objects at very high spectral resolution, yet covering a wide wavelength range. It does this by separating the light into many “stripes” of spectra stacked across a mosaic of three large CCD detectors. HIRES is famous for finding exoplanets. Astronomers also use HIRES to study important astrophysical phenomena like distant galaxies and quasars, and find cosmological clues about the structure of the early universe, just after the Big Bang.

• December 2, 2021: As far as extrasolar planets go, 'GJ 367 b' is a featherweight. With half the mass of Earth, the newly discovered planet is one of the lightest among the nearly 5000 exoplanets known today. It takes the extrasolar planet approximately eight hours to orbit its parent star. With a diameter of just over 9000 km, GJ 367 b is slightly larger than Mars. The planetary system is located just under 31 light years from Earth and is thus ideal for further investigation. The discovery demonstrates that it is possible to precisely determine the properties of even the smallest, least massive exoplanets. Such studies provide a key to understanding how terrestrial planets form and evolve. 20)

- An international group of 78 researchers led by Kristine W. F. Lam and Szilárd Csizmadia from the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) Institute of Planetary Research report on the results of their studies in the scientific journal Science. With an orbital period of only one-third of an Earth day, GJ 367 b is a fast mover. "From the precise determination of its radius and mass, GJ 367b is classified as a rocky planet," reports Kristine Lam. "It seems to have similarities to Mercury. This places it among the sub-Earth sized terrestrial planets and brings research one step forward in the search for a 'second Earth'." 21)

Figure 17: Artist's rendition of Planet GI 367 [image credit: SPP 1992 (Patricia Klein)]
Figure 17: Artist's rendition of Planet GI 367 [image credit: SPP 1992 (Patricia Klein)]
Figure 18: Mass and radius of known small planets [image credit: Science (Lam et al. 2021)]
Figure 18: Mass and radius of known small planets [image credit: Science (Lam et al. 2021)]

More Precise Exoplanet Trackers Tossible

- A quarter of a century after the first discovery of an extrasolar planet, the focus has shifted to characterizing these planets more precisely, in addition to making new discoveries. At present, it is possible to construct a much more precise profile for most known exoplanets. Many exoplanets were discovered using the transit method – the measurement of minute differences in the emitted light, or apparent magnitude, of a star as a planet passes in front of it (with respect to the observer). GJ 367 b was also discovered using this method, with the help of NASA's Transiting Exoplanet Survey Satellite (TESS).

Origin of the Small Fast-moving Planets Still Unknown

- GJ 367 b belongs to the 'ultra-short period' (USP) group of exoplanets that orbit their star in less than 24 hours. "We already know a few of these, but their origins are currently unknown," says Kristine Lam. "By measuring the precise fundamental properties of the USP planet, we can get a glimpse of the system's formation and evolution history." Following the discovery of this planet using TESS and the transit method, the spectrum of its star was then studied from the ground using the radial velocity method. The mass was determined using the HARPS instrument on the European Southern Observatory's 3.6m Telescope. With the meticulous study and combination of different evaluation methods, the radius and mass of the planet were precisely determined: its radius is 72 percent that of Earth's, and its mass 55 percent that of Earth's.

Highest Precision for Radius and Mass

- By determining its radius and mass with a precision of 7 and 14 percent respectively, the researchers were also able to draw conclusions about the exoplanet's inner structure. It is a low-mass rocky planet, but is more dense than the Earth. "The high density indicates the planet is dominated by an iron core," explains Szilárd Csizmadia. "These properties are similar to those of Mercury, with its disproportionately large iron and nickel core that differentiates it from other terrestrial bodies in the Solar System." However, the planet's proximity to its star means it is exposed to extremely high levels of radiation, more than 500 times stronger than what the Earth experiences. The surface temperature could reach up to 1500 degrees Celsius – a temperature at which all rocks and metals would be melted. Therefore, GJ 367 b cannot be considered a 'second Earth'.

Parent Star is a 'Red Dwarf'

- The parent star of this newly discovered exoplanet, a red dwarf called GJ 367, is only about half the size of the Sun. This was beneficial for its discovery as the transit signal of the orbiting planet is particularly significant. Red dwarfs are not only smaller, but also cooler than the Sun. This makes their associated planets easier to find and characterize. They are among the most common stellar objects in our cosmic neighborhood and are therefore suitable targets for exoplanet research. Researchers estimate that these red dwarfs, also known as 'class M stars', are orbited by an average of two to three planets.

• August 27, 2021: Brown dwarfs are astronomical objects with masses between those of planets and stars. The question of where exactly the limits of their mass lie remains a matter of debate, especially since their constitution is very similar to that of low-mass stars. So how do we know whether we are dealing with a brown dwarf or a very low mass star? An international team, led by scientists from the University of Geneva (UNIGE) and the Swiss National Centre of Competence in Research (NCCR) PlanetS, in collaboration with the University of Bern, has identified five objects that have masses near the border separating stars and brown dwarfs that could help scientists understand the nature of these mysterious objects. The results can be found in the journal Astronomy & Astrophysics. 22) 23)

- Like Jupiter and other giant gas planets, stars are mainly made of hydrogen and helium. But unlike gas planets, stars are so massive and their gravitational force so powerful that hydrogen atoms fuse to produce helium, releasing huge amounts of energy and light.

‘Failed Stars’

- Brown dwarfs, on the other hand, are not massive enough to fuse hydrogen and therefore cannot produce the enormous amount of light and heat of stars. Instead, they fuse relatively small stores of a heavier atomic version of hydrogen: deuterium. This process is less efficient and the light from brown dwarfs is much weaker than that from stars. This is why scientists often refer to them as ‘failed stars’.

- “However, we still do not know exactly where the mass limits of brown dwarfs lie, limits that allow them to be distinguished from low-mass stars that can burn hydrogen for many billions of years, whereas a brown dwarf will have a short burning stage and then a colder life” points out Nolan Grieves, a researcher in the Department of Astronomy at the UNIGE’s Faculty of Science, a member of the NCCR PlanetS and the study’s first author. “These limits vary depending on the chemical composition of the brown dwarf, for example, or the way it formed, as well as its initial radius,” he explains. To get a better idea of what these mysterious objects are, we need to study examples in detail. But it turns out that they are rather rare. “So far, we have only accurately characterized about 30 brown dwarfs,” says the Geneva-based researcher. Compared to the hundreds of planets that astronomers know in detail, this is very few. All the more so if one considers that their larger size makes brown dwarfs easier to detect than planets.

New Pieces to the Puzzle

- Today, the international team characterized five companions that were originally identified with the Transiting Exoplanet Survey Satellite (TESS) as TESS objects of interest (TOI) – TOI-148, TOI-587, TOI-681, TOI-746 and TOI-1213. These are called ‘companions’ because they orbit their respective host stars. They do so with periods of 5 to 27 days, have radii between 0.81 and 1.66 times that of Jupiter and are between 77 and 98 times more massive. This places them on the borderline between brown dwarfs and stars.

- These five new objects therefore contain valuable information. “Each new discovery reveals additional clues about the nature of brown dwarfs and gives us a better understanding of how they form and why they are so rare,” says Monika Lendl, a researcher in the Department of Astronomy at the UNIGE and a member of the NCCR PlanetS.

- One of the clues the scientists found to show these objects are brown dwarfs is the relationship between their size and age, as explained by François Bouchy, professor at UNIGE and member of the NCCR PlanetS: “Brown dwarfs are supposed to shrink over time as they burn up their deuterium reserves and cool down. Here we found that the two oldest objects, TOI 148 and 746, have a smaller radius, while the two younger companions have larger radii.”

- Yet these objects are so close to the limit that they could just as easily be very low-mass stars, and astronomers are still unsure whether they are brown dwarfs. “Even with these additional objects, we still lack the numbers to draw definitive conclusions about the differences between brown dwarfs and low-mass stars. Further studies are needed to find out more,” concludes Grieves.

Figure 19: Artist’s illustration showing the five brown dwarfs (TOIs) as well as the Sun, Jupiter and a low mass star for reference (image credit: Thibaut Roger)
Figure 19: Artist’s illustration showing the five brown dwarfs (TOIs) as well as the Sun, Jupiter and a low mass star for reference (image credit: Thibaut Roger)

• August 6, 2021: The leaders of a NASA exoplanet mission are considering using a spare camera for a companion mission that would enable them to confirm existing discoveries and make new ones. 24)

- NASA's TESS launched in April 2018 to perform an all-sky survey. The spacecraft’s four cameras observe regions of the sky for weeks at a time, looking for minute dips in brightness of stars caused when exoplanets cross is front of, or transit, those stars.

- TESS, which completed its two-year primary mission in 2020 and is now in an extended mission, has discovered thousands of potential exoplanets. In an Aug. 2 talk at the second TESS Science Conference, George Ricker, principal investigator for TESS at the Massachusetts Institute of Technology, said the mission had so far discovered 4,349 “objects of interest,” of which 3,667 were planet candidates. About 800 of those planet candidates are small exoplanets, with radii no more than four times that of the Earth.

- The spacecraft remains in good condition. “The spacecraft and the instruments are all working really well,” said Roland Vanderspek, deputy principal investigator for TESS, in a separate presentation at the conference. “There’s really been no change in their performance since the beginning of the mission.”

- The project is gearing up for a second extended mission that would start in October 2022 and last for three years. The health of the spacecraft along with its stable orbit, a highly elliptical two-week orbit around the Earth, give project officials confidence that TESS could operate into the next decade.

- At the conference, Ricker discussed a proposal for a companion mission to TESS, currently known as TESS-L5. That would be a small spacecraft equipped with a camera that was built as a flight spare for the four on TESS. The spacecraft would operate from the Earth-sun L-5 Lagrange point, one astronomical unit, or about 150 million kilometers, from the Earth.

- TESS-L5 would be able to perform observations of the same field of view of any of the cameras on TESS. “There is nothing that inspires more confidence in the validity of an observation than making that same observation at the same time from two different locations using near-identical detectors and getting the same result,” Ricker said in an email.

- The long baseline between TESS, orbiting the Earth, and TESS-L5 could enable additional science, such as searching for solar system objects. “You will be able to utilize parallax measurements to determine where the objects observed actually are,” he said, estimating the joint observations could find 500 transneptunian objects in the outer solar system. TESS-L5 alone, from its vantage point, could also detect near Earth objects approaching the Earth from the direction of sun, which are difficult to otherwise observe.

- The TESS-L5 mission would use laser communications to transmit data back to Earth. That system would provide six megabits per second of bandwidth and would use one-meter telescopes on Earth to receive the signals. Those downlinks would take place in daylight, meaning that the telescopes could be for astronomical observations at night as well.

- Ricker said TESS-L5 is still a concept at a fairly early stage, although the project has studied the feasibility of the laser communications system and is looking into “significant private contribution to parts of the system,” such as the ground stations. It’s unclear how much the mission would cost, although as a smallsat using spare flight hardware its costs could be kept down.

- A decision about whether to pursue TESS-L5 will depend on the state of TESS itself. If TESS continues to function well and have its mission extended, “we could possibly launch TESS-L5 during the 2026-2029 timeframe,” he said.

• August 4, 2021: Using observations from NASA’s Transiting Exoplanet Survey Satellite (TESS), astronomers have identified an unprecedented collection of pulsating red giant stars all across the sky. These stars, whose rhythms arise from internal sound waves, provide the opening chords of a symphonic exploration of our galactic neighborhood. 25)

Figure 20: Red giant stars near and far sweep across the sky in this illustration. Measurements from NASA’s Transiting Exoplanet Survey Satellite have identified more than 158,000 pulsating red giants across nearly the entire sky. Such discoveries hold great potential for exploring the detailed structure of our home galaxy [image credit: NASA’s Goddard Space Flight Center/Chris Smith (KBRwyle)]
Figure 20: Red giant stars near and far sweep across the sky in this illustration. Measurements from NASA’s Transiting Exoplanet Survey Satellite have identified more than 158,000 pulsating red giants across nearly the entire sky. Such discoveries hold great potential for exploring the detailed structure of our home galaxy [image credit: NASA’s Goddard Space Flight Center/Chris Smith (KBRwyle)]

- TESS primarily hunts for worlds beyond our solar system, also known as exoplanets. But its sensitive measurements of stellar brightness make TESS ideal for studying stellar oscillations, an area of research called asteroseismology.

- “Our initial result, using stellar measurements across TESS’s first two years, shows that we can determine the masses and sizes of these oscillating giants with precision that will only improve as TESS goes on,” said Marc Hon, a NASA Hubble Fellow at the University of Hawaii in Honolulu. “What’s really unparalleled here is that TESS’s broad coverage allows us to make these measurements uniformly across almost the entire sky.”

 
Figure 21: This visualization shows the new sample of oscillating red giant stars (colored dots) discovered by NASA’s Transiting Exoplanet Survey Satellite. The colors map to each 24-by-96-degree swath of the sky observed during the mission's first two years. The view then changes to show the positions of these stars within our galaxy, based on distances determined by ESA’s (the European Space Agency’s) Gaia mission. The scale shows distances in kiloparsecs, each equal to 3,260 light-years, and extends nearly 20,000 light-years from the Sun (video credit: Credit: Kristin Riebe, Leibniz Institute for Astrophysics Potsdam, Germany)

- Hon presented the research during the second TESS Science Conference, an event supported by the Massachusetts Institute of Technology in Cambridge – held virtually from Aug. 2 to 6 – where scientists discuss all aspects of the mission. The Astrophysical Journal has accepted a paper describing the findings, led by Hon.

- Sound waves traveling through any object – a guitar string, an organ pipe, or the interiors of Earth and the Sun – can reflect and interact, reinforcing some waves and canceling out others. This can result in orderly motion called standing waves, which create the tones in musical instruments.

- Just below the surfaces of stars like the Sun, hot gas rises, cools, and then sinks, where it heats up again, much like a pan of boiling water on a hot stove. This motion produces waves of changing pressure – sound waves – that interact, ultimately driving stable oscillations with periods of a few minutes that produce subtle brightness changes. For the Sun, these variations amount to a few parts per million. Giant stars with masses similar to the Sun’s pulsate much more slowly, and the corresponding brightness changes can be hundreds of times greater.

- Oscillations in the Sun were first observed in the 1960s. Solar-like oscillations were detected in thousands of stars by the French-led Convection, Rotation and planetary Transits (CoRoT) space telescope, which operated from 2006 to 2013. NASA’s Kepler and K2 missions, which surveyed the sky from 2009 to 2018, found tens of thousands of oscillating giants. Now TESS extends this number by another 10 times.

- “With a sample this large, giants that might occur only 1% of the time become pretty common,” said co-author Jamie Tayar, a Hubble Fellow at the University of Hawaii. “Now we can start thinking about finding even rarer examples.”

- The physical differences between a cello and a violin produce their distinctive voices. Similarly, the stellar oscillations astronomers observe depend on each star’s interior structure, mass, and size. This means asteroseismology can help determine fundamental properties for large numbers of stars with accuracies not achievable in any other way.

 
Figure 22: Listen to the rhythms of three red giants in the constellation Draco, as determined by brightness measurements from NASA’s Transiting Exoplanet Survey Satellite. To produce audible tones, astronomers multiplied the oscillation frequencies of the stars by 3 million times. It’s clear that larger stars produce longer, deeper pulsations than smaller ones (video credit: NASA/MIT/TESS and Ethan Kruse (USRA), M. Hon et al., 2021)

- When stars similar in mass to the Sun evolve into red giants, the penultimate phase of their stellar lives, their outer layers expand by 10 or more times. These vast gaseous envelopes pulsate with longer periods and larger amplitudes, which means their oscillations can be observed in fainter and more numerous stars.

- TESS monitors large swaths of the sky for about a month at a time using its four cameras. During its two-year primary mission, TESS covered about 75% of the sky, each camera capturing a full image measuring 24-by-24 degrees every 30 minutes. In mid-2020, the cameras began collecting these images at an even faster pace, every 10 minutes.

- The images were used to develop light curves – graphs of changing brightness – for nearly 24 million stars over 27 days, the length of time TESS stares at each swath of the sky. To sift through this immense accumulation of measurements, Hon and his colleagues taught a computer to recognize pulsating giants. The team used machine learning, a form of artificial intelligence that trains computers to make decisions based on general patterns without explicitly programming them.

Figure 23: NASA’s TESS imaged about 75% of the sky during its two-year-long primary mission. This plot dissolves between the TESS sky map and a “mass map” constructed by combining TESS measurements of 158,000 oscillating red giant stars with their distances, established by ESA’s (the European Space Agency’s) Gaia mission. The prominent band in both images is the Milky Way, which marks the central plane of our galaxy. In the mass map, green, yellow, orange, and red show where giant stars average more than 1.4 times the Sun’s mass. Such stars evolve faster than the Sun, becoming giants at younger ages. The close correspondence of higher-mass giants with the plane of the Milky Way, which contains our galaxy's spiral arms, demonstrates that it contains many young stars (image credit: NASA/MIT/TESS and Ethan Kruse (USRA), M. Hon et al., 2021)
Figure 23: NASA’s TESS imaged about 75% of the sky during its two-year-long primary mission. This plot dissolves between the TESS sky map and a “mass map” constructed by combining TESS measurements of 158,000 oscillating red giant stars with their distances, established by ESA’s (the European Space Agency’s) Gaia mission. The prominent band in both images is the Milky Way, which marks the central plane of our galaxy. In the mass map, green, yellow, orange, and red show where giant stars average more than 1.4 times the Sun’s mass. Such stars evolve faster than the Sun, becoming giants at younger ages. The close correspondence of higher-mass giants with the plane of the Milky Way, which contains our galaxy's spiral arms, demonstrates that it contains many young stars (image credit: NASA/MIT/TESS and Ethan Kruse (USRA), M. Hon et al., 2021)

- To train the system, the team used Kepler light curves for more than 150,000 stars, of which some 20,000 were oscillating red giants. When the neural network finished processing all of the TESS data, it had identified a chorus of 158,505 pulsating giants.

- Next, the team found distances for each giant using data from ESA’s (the European Space Agency’s) Gaia mission, and plotted the masses of these stars across the sky. Stars more massive than the Sun evolve faster, becoming giants at younger ages. A fundamental prediction in galactic astronomy is that younger, higher-mass stars should lie closer to the plane of the galaxy, which is marked by the high density of stars that create the glowing band of the Milky Way in the night sky.

- “Our map demonstrates for the first time empirically that this is indeed the case across nearly the whole sky,” said co-author Daniel Huber, an assistant professor for astronomy at the University of Hawaii. “With the help of Gaia, TESS has now given us tickets to a red giant concert in the sky.”

• July 12, 2021: Thanks to data from NASA’s Transiting Exoplanet Survey Satellite (TESS), an international collaboration of astronomers has identified four exoplanets, worlds beyond our solar system, orbiting a pair of related young stars called TOI 2076 and TOI 1807. 26)

- These worlds may provide scientists with a glimpse of a little-understood stage of planetary evolution.

- “The planets in both systems are in a transitional, or teenage, phase of their life cycle,” said Christina Hedges, an astronomer at the Bay Area Environmental Research Institute in Moffett Field and NASA’s Ames Research Center in Silicon Valley, both in California. “They’re not newborns, but they’re also not settled down. Learning more about planets in this teen stage will ultimately help us understand older planets in other systems.”

- A paper describing the findings, led by Hedges, was published in The Astronomical Journal.

 
Figure 24: Stellar siblings over 130 light-years away host two systems of teenage planets. Watch to learn how NASA’s Transiting Exoplanet Survey Satellite discovered these young worlds and what they might tell us about the evolution of planetary systems everywhere, including our own [video credits: NASA’s Goddard Space Flight Center/Chris Smith (KBRwyle)]

- TOI 2076 and TOI 1807 reside over 130 light-years away with some 30 light-years between them, which places the stars in the northern constellations of Boötes and Canes Venatici, respectively. Both are K-type stars, dwarf stars more orange than our Sun, and around 200 million years old, or less than 5% of the Sun’s age. In 2017, using data from ESA’s (the European Space Agency’s) Gaia satellite, scientists showed that the stars are traveling through space in the same direction.

- Astronomers think the stars are too far apart to be orbiting each other, but their shared motion suggests they are related, born from the same cloud of gas.

- Both TOI 2076 and TOI 1807 experience stellar flares that are much more energetic and occur much more frequently than those produced by our own Sun.

- “The stars produce perhaps 10 times more UV light than they will when they reach the Sun’s age,” said co-author George Zhou, an astrophysicist at the University of Southern Queensland in Australia. “Since the Sun may have been equally as active at one time, these two systems could provide us with a window into the early conditions of the solar system.”

- TESS monitors large swaths of the sky for nearly a month at a time. This long gaze allows the satellite to find exoplanets by measuring small dips in stellar brightness caused when a planet crosses in front of, or transits, its star.

- Alex Hughes initially brought TOI 2076 to astronomers’ attention after spotting a transit in the TESS data while working on an undergraduate project at Loughborough University in England, and he has since graduated with a bachelor’s degree in physics. Hedges’ team eventually discovered three mini-Neptunes, worlds between the diameters of Earth and Neptune, orbiting the star. Innermost planet TOI 2076 b is about three times Earth’s size and circles its star every 10 days. Outer worlds TOI 2076 c and d are both a little over four times larger than Earth, with orbits exceeding 17 days.

- TOI 1807 hosts only one known planet, TOI 1807 b, which is about twice Earth’s size and orbits the star in just 13 hours. Exoplanets with such short orbits are rare. TOI 1807 b is the youngest example yet discovered of one of these so-called ultra-short period planets.

- Scientists are currently working to measure the planets’ masses, but interference from the hyperactive young stars could make this challenging.

- According to theoretical models, planets initially have thick atmospheres left over from their formation in disks of gas and dust around infant stars. In some cases, planets lose their initial atmospheres due to stellar radiation, leaving behind rocky cores. Some of those worlds go on to develop secondary atmospheres through planetary processes like volcanic activity.

- The ages of the TOI 2076 and TOI 1807 systems suggest that their planets may be somewhere in the middle of this atmospheric evolution. TOI 2076 b receives 400 times more UV light from its star than Earth does from the Sun – and TOI 1807 b gets around 22,000 times more.

- If scientists can discover the planets’ masses, the information could help them determine if missions like NASA’s Hubble and upcoming James Webb space telescopes can study the planets’ atmospheres – if they have them.

- The team is particularly interested in TOI 1807 b because it’s an ultra-short period planet. Theoretical models suggest it should be difficult for worlds to form so close to their stars, but they can form farther out and then migrate inward. Because it would have had to both form and migrate in just 200 million years, TOI 1807 b will help scientists further understand the life cycles of these types of planets. If it doesn’t have a very thick atmosphere and its mass is mostly rock, the planet’s proximity to its star could potentially mean its surface is covered in oceans or lakes of molten lava.

- “Many objects we study in astronomy evolve on such long timescales that a human being can’t see changes month to month or year to year,” said co-author Trevor David, a research fellow at the Flatiron Institute’s Center for Computational Astrophysics in New York. “If you want to see how planets evolve, your best bet is to find many planets of different ages and then ask how they’re different. The TESS discovery of the TOI 2076 and TOI 1807 systems advances our understanding of the teenage exoplanet stage.”

• April 30, 2021: NASA has a long tradition of unexpected discoveries, and the space program's TESS mission is no different. SMU astrophysicist and her team have discovered a particularly bright gamma-ray burst using a NASA telescope designed to find exoplanets — those occurring outside our solar system — particularly those that might be able to support life. 27)

- It's the first time a gamma-ray burst has been found this way.

- Gamma-ray bursts are the brightest explosions in the universe, typically associated with the collapse of a massive star and the birth of a black hole. They can produce as much radioactive energy as the sun will release during its entire 10-billion-year existence.

- Krista Lynne Smith, an assistant professor of physics at Southern Methodist University, and her team confirmed the blast — called GRB 191016A — happened on Oct. 16 and also determined its location and duration. A study on the discovery has been published in The Astrophysical Journal. 28)

- "Our findings prove this TESS telescope is useful not just for finding new planets, but also for high-energy astrophysics," said Smith, who specializes in using satellites like TESS (Transiting Exoplanet Survey Satellite) to study supermassive black holes and gas that surrounds them. Such studies shed light on the behavior of matter in the deeply warped spacetime around black holes and the processes by which black holes emit powerful jets into their host galaxies.

- Smith calculated that GRB 191016A had a peak magnitude of 15.1, which means it was 10,000 times fainter than the faintest stars we can see with the naked eyes.

- That may sound quite dim, but the faintness has to do with how far away the burst occurred. It is estimated that light from GRB 191016A's galaxy had been travelling 11.7 billion years before becoming visible in the TESS telescope.

- Most gamma ray bursts are dimmer – closer to 160,000 times fainter than the faintest stars.

- The burst reached its peak brightness sometime between 1,000 and 2,600 seconds, then faded gradually until it fell below the ability of TESS to detect it some 7000 seconds after it first went off.

How SMU and a team of exoplanet specialists confirmed the burst

- This gamma-ray burst was first detected by a NASA’s satellite called Swift-BAT, which was built to find these bursts. But because GRB 191016A occurred too close to the moon, the Swift-BAT couldn’t do the necessary follow-up it normally would have to learn more about it until hours later.

- NASA’s TESS happened to be looking at that same part of the sky. That was sheer luck, as TESS turns its attention to a new strip of the sky every month.

Figure 25: TESS full-frame image in the cadence just before the BAT trigger (left) and at the peak flux of the burst (center). The emergence of the afterglow is apparent in the center of the image, indicated by the white arrow. The right panel shows the same region of the sky, with a slightly different orientation, in the Digitized Sky Survey (DSS); a small inset of TESS image is provided in the bottom left corner to demonstrate the change in orientation (image credit: SMU and collaborators)
Figure 25: TESS full-frame image in the cadence just before the BAT trigger (left) and at the peak flux of the burst (center). The emergence of the afterglow is apparent in the center of the image, indicated by the white arrow. The right panel shows the same region of the sky, with a slightly different orientation, in the Digitized Sky Survey (DSS); a small inset of TESS image is provided in the bottom left corner to demonstrate the change in orientation (image credit: SMU and collaborators)

- While exoplanet researchers at a ground-base for TESS could tell right away that a gamma-ray burst had happened, it would be months before they got any data from the TESS satellite on it. But since their focus was on new planets, these researchers asked if any other scientists at a TESS conference in Sydney, Australia was interested in doing more digging on the blast.

- Smith was one of the few high-energy astrophysics specialists there at that time and quickly volunteered.

- “The TESS satellite has a lot of potential for high-energy applications, and this was too good an example to pass up,” she said. High-energy astrophysics studies the behavior of matter and energy in extreme environments, including the regions around black holes, powerful relativistic jets, and explosions like gamma ray bursts.

- TESS is an optical telescope that collects light curves on everything in its field of view, every half hour. Light curves are a graph of light intensity of a celestial object or region as a function of time. Smith analyzed three of these light curves to be able to determine how bright the burst was.

- She also used data from ground-based observatories and the Swift gamma ray satellite to determine the burst's distance and other qualities about it.

- "Because the burst reached its peak brightness later and had a peak brightness that was higher than most bursts, it allowed the TESS telescope to make multiple observations before the burst faded below the telescope's detection limit," Smith said. “We’ve provided the only space-based optical follow-up on this exceptional burst.”

• February 12, 2021: Using observations from NASA’s Transiting Exoplanet Survey Satellite (TESS), an international team of astronomers has discovered a trio of hot worlds larger than Earth orbiting a much younger version of our Sun called TOI 451. The system resides in the recently discovered Pisces-Eridanus stream, a collection of stars less than 3% the age of our solar system that stretches across one-third of the sky. 29)

Figure 26: This illustration sketches out the main features of TOI 451, a triple-planet system located 400 light-years away in the constellation Eridanus (image credit: NASA’s Goddard Space Flight Center)
Figure 26: This illustration sketches out the main features of TOI 451, a triple-planet system located 400 light-years away in the constellation Eridanus (image credit: NASA’s Goddard Space Flight Center)

- The planets were discovered in TESS images taken between October and December 2018. Follow-up studies of TOI 451 and its planets included observations made in 2019 and 2020 using NASA’s Spitzer Space Telescope, which has since been retired, as well as many ground-based facilities. Archival infrared data from NASA’s Near-Earth Object Wide-Field Infrared Survey Explorer (NEOWISE) satellite – collected between 2009 and 2011 under its previous moniker, WISE – suggests the system retains a cool disk of dust and rocky debris. Other observations show that TOI 451 likely has two distant stellar companions circling each other far beyond the planets.

- “This system checks a lot of boxes for astronomers,” said Elisabeth Newton, an assistant professor of physics and astronomy at Dartmouth College in Hanover, New Hampshire, who led the research. “It’s only 120 million years old and just 400 light-years away, allowing detailed observations of this young planetary system. And because there are three planets between two and four times Earth’s size, they make especially promising targets for testing theories about how planetary atmospheres evolve.”

- A paper reporting the findings was published on Jan. 14 in The Astronomical Journal and is available online.

- Stellar streams form when the gravity of our Milky Way galaxy tears apart star clusters or dwarf galaxies. The individual stars move out along the cluster’s original orbit, forming an elongated group that gradually disperses.

- In 2019, a team led by Stefan Meingast at the University of Vienna used data from the European Space Agency’s Gaia mission to discover the Pisces-Eridanus stream, named for the constellations containing the greatest concentrations of stars. Stretching across 14 constellations, the stream is about 1,300 light-years long. However, the age initially determined for the stream was much older than we now think.

- Later in 2019, researchers led by Jason Curtis at Columbia University in New York City analyzed TESS data for dozens of stream members. Younger stars spin faster than their older counterparts do, and they also tend to have prominent starspots – darker, cooler regions like sunspots. As these spots rotate in and out of our view, they can produce slight variations in a star’s brightness that TESS can measure.

- The TESS measurements revealed overwhelming evidence of starspots and rapid rotation among the stream’s stars. Based on this result, Curtis and his colleagues found that the stream was only 120 million years old – similar to the famous Pleiades cluster and eight times younger than previous estimates. The mass, youth, and proximity of the Pisces-Eridanus stream make it an exciting fundamental laboratory for studying star and planet formation and evolution.

- “Thanks to TESS’s nearly all-sky coverage, measurements that could support a search for planets orbiting members of this stream were already available to us when the stream was identified,” said Jessie Christiansen, a co-author of the paper and the deputy science lead at the NASA Exoplanet Archive, a facility for researching worlds beyond our solar system managed by Caltech in Pasadena, California. “TESS data will continue to allow us to push the limits of what we know about exoplanets and their systems for years to come.”

- The young star TOI 451, better known to astronomers as CD-38 1467, lies about 400 light-years away in the constellation Eridanus. It has 95% of our Sun’s mass, but it is 12% smaller, slightly cooler, and emits 35% less energy. TOI 451 rotates every 5.1 days, which is more than five times faster than the Sun.

- TESS spots new worlds by looking for transits, the slight, regular dimmings that occur when a planet passes in front of its star from our perspective. Transits from all three planets are evident in the TESS data. Newton’s team obtained measurements from Spitzer that supported the TESS findings and helped to rule out possible alternative explanations. Additional follow-up observations came from Las Cumbres Observatory – a global telescope network headquartered in Goleta, California – and the Perth Exoplanet Survey Telescope in Australia.

- Even TOI 451’s most distant planet orbits three times closer than Mercury ever approaches to the Sun, so all of these worlds are quite hot and inhospitable to life as we know it. Temperature estimates range from about 2,200 degrees Fahrenheit (1,200 degrees Celsius) for the innermost planet to about 840 F (450 C) for the outermost one.

- TOI 451 b orbits every 1.9 days, is about 1.9 times Earth’s size, and its estimated mass ranges from two to 12 times Earth’s. The next planet out, TOI 451 c, completes an orbit every 9.2 days, is about three times larger than Earth, and holds between three and 16 times Earth’s mass. The farthest and largest world, TOI 451 d, circles the star every 16 days, is four times the size of our planet, and weighs between four and 19 Earth masses.

- Astronomers expect planets as big as these to retain much of their atmospheres despite the intense heat from their nearby star. Different theories of how atmospheres evolve by the time a planetary system reaches TOI 451’s age predict a wide range of properties. Observing starlight passing through the atmospheres of these planets provides an opportunity to study this phase of development and could aid in constraining current models.

Figure 27: The Pisces-Eridanus stream spans 1,300 light-years, sprawling across 14 constellations and one-third of the sky. Yellow dots show the locations of known or suspected members, with TOI 451 circled. TESS observations show that the stream is about 120 million years old, comparable to the famous Pleiades cluster in Taurus (upper left), image credit: NASA’s Goddard Space Flight Center
Figure 27: The Pisces-Eridanus stream spans 1,300 light-years, sprawling across 14 constellations and one-third of the sky. Yellow dots show the locations of known or suspected members, with TOI 451 circled. TESS observations show that the stream is about 120 million years old, comparable to the famous Pleiades cluster in Taurus (upper left), image credit: NASA’s Goddard Space Flight Center

- “By measuring starlight penetrating a planet’s atmosphere at different wavelengths, we can infer its chemical composition and the presence of clouds or high-altitude hazes,” said Elisa Quintana, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “TOI 451’s planets offer excellent targets for such studies with Hubble and the upcoming James Webb Space Telescope.”

- Observations from WISE show that the system is unusually bright in infrared light, which is invisible to human eyes, at wavelengths of 12 and 24 micrometers. This suggests the presence of a debris disk, where rocky asteroid-like bodies collide and grind themselves to dust. While Newton and her team cannot determine the extent of the disk, they envision it as a diffuse ring of rock and dust centered about as far from the star as Jupiter is from our Sun.

- The researchers also investigated a faint neighboring star that appears about two pixels away from TOI 451 in TESS images. Based on Gaia data, Newton’s team determined this star to be a gravitationally bound companion located so far from TOI 451 that its light takes 27 days to get there. In fact, the researchers think the companion is likely a binary system of two M-type dwarf stars, each with about 45% of the Sun’s mass and emitting only 2% of its energy.

- TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA's Goddard Space Flight Center. Additional partners include Northrop Grumman, based in Falls Church, Virginia; NASA’s Ames Research Center in California’s Silicon Valley; the Center for Astrophysics | Harvard & Smithsonian in Cambridge, Massachusetts; MIT’s Lincoln Laboratory; and the Space Telescope Science Institute in Baltimore. More than a dozen universities, research institutes, and observatories worldwide are participants in the mission.

- NASA's Jet Propulsion Laboratory in Southern California manages NEOWISE for NASA's Science Mission Directorate in Washington. Ball Aerospace & Technologies Corp. of Boulder, Colorado, built the spacecraft. Science data processing takes place at IPAC at Caltech in Pasadena. Caltech manages JPL for NASA.

• January 27, 2021: The discovery: TYC 7037-89-1 is the first six-star system ever found where all of the stars participate in eclipses, a discovery made by NASA’s Transiting Exoplanet Survey Satellite (TESS). The system is located about 1,900 light-years away in the constellation Eridanus. 30)

- Key facts: The system, also called TIC 168789840, is the first known sextuple composed of three sets of eclipsing binaries, stellar pairs whose orbits tip into our line of sight so we observe the stars alternatively passing in front of each other. Each eclipse causes a dip in the system’s overall brightness. Astronomers designate the binaries by the letters A, B, and C. The stars in the A and C systems orbit each other roughly every day and a half, and the two binaries orbit each other about every four years. The B binary’s members circle each other about every eight days, but the pair is much farther away, orbiting around the inner systems roughly every 2,000 years. The primary stars in all three binaries are all slightly bigger and more massive than the Sun and about as hot. The secondaries are all around half the Sun’s size and a third as hot.

Figure 28: This schematic shows the configuration of the sextuple star system TYC 7037-89-1. The inner quadruple is composed of two binaries, A and C, which orbit each other every four years or so. An outer binary, B, orbits the quadruple roughly every 2,000 years. All three pairs are eclipsing binaries. The orbits shown are not to scale (image credit: NASA's Goddard Space Flight Center)
Figure 28: This schematic shows the configuration of the sextuple star system TYC 7037-89-1. The inner quadruple is composed of two binaries, A and C, which orbit each other every four years or so. An outer binary, B, orbits the quadruple roughly every 2,000 years. All three pairs are eclipsing binaries. The orbits shown are not to scale (image credit: NASA's Goddard Space Flight Center)

- Details: Scientists used the NASA Center for Climate Simulation’s Discover supercomputer at NASA/GSFC to chart how the brightness of around 80 million stars observed by TESS changed over time. They then analyzed the data using autonomous software trained to recognize the tell-tale brightness dips of eclipsing binaries. Among the 450,000 candidates, researchers identified at least 100 with potentially three or more stars, including the new sextuple system.

- Fun facts: Astrophysicists are very interested in eclipsing binaries because their structure aids detailed measurements of the stars’ sizes, masses, temperatures, and separation as well as the distance to the system. They can use this information to build better models of star formation and evolution. For example, in the case of TYC 7037-89-1, scientists want to learn more about how the primary and secondary stars across the three binaries developed such similar properties and how the three systems became gravitationally bound.

- The discoverers: An international team, led by data scientist Brian P. Powell and astrophysicist Veselin Kostov at Goddard, made the discovery using TESS data. The researchers incorporated archival measurements and also obtained follow-up observations with ground-based facilities. The core team includes Saul Rappaport at MIT, Tamás Borkovits at the University of Szeged in Hungary, Petr Zasche at Charles University in the Czech Republic, and Andrei Tokovinin at NSF’s NOIRLab. 31)

• January 12, 2021: During a typical year, over a million people visit Yellowstone National Park, where the Old Faithful geyser regularly blasts a jet of boiling water high in the air. Now, an international team of astronomers has discovered a cosmic equivalent, a distant galaxy that erupts roughly every 114 days. 32)

- Using data from facilities including NASA’s Neil Gehrels Swift Observatory and Transiting Exoplanet Survey Satellite (TESS), the scientists have studied 20 repeated outbursts of an event called ASASSN-14ko. These various telescopes and instruments are sensitive to different wavelengths of light. By using them collaboratively, scientists obtained more detailed pictures of the outbursts.

- “These are the most predictable and frequent recurring multiwavelength flares we’ve seen from a galaxy’s core, and they give us a unique opportunity to study this extragalactic Old Faithful in detail,” said Anna Payne, a NASA Graduate Fellow at the University of Hawai’i at Mānoa. “We think a supermassive black hole at the galaxy’s center creates the bursts as it partially consumes an orbiting giant star.”

- Payne presented the findings on Tuesday, Jan. 12, at the virtual 237th meeting of the American Astronomical Society. A paper on the source and these observations, led by Payne, is undergoing scientific review.

 
Figure 29: Watch as a monster black hole partially consumes an orbiting giant star. In this illustration, the gas pulled from the star collides with the black hole’s debris disk and causes a flare. Astronomers have named this repeating event ASASSN-14ko. The flares are the most predictable and frequent yet seen from an active galaxy (video credit: NASA’s Goddard Space Flight Center)

- Astronomers classify galaxies with unusually bright and variable centers as active galaxies. These objects can produce much more energy than the combined contribution of all their stars, including higher-than-expected levels of visible, ultraviolet, and X-ray light. Astrophysicists think the extra emission comes from near the galaxy’s central supermassive black hole, where a swirling disk of gas and dust accumulates and heats up because of gravitational and frictional forces. The black hole slowly consumes the material, which creates random fluctuations in the disk’s emitted light.

- But astronomers are interested in finding active galaxies with flares that happen at regular intervals, which might help them identify and study new phenomena and events.

- “ASASSN-14ko is currently our best example of periodic variability in an active galaxy, despite decades of other claims, because the timing of its flares is very consistent over the six years of data Anna and her team analyzed,” said Jeremy Schnittman, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who studies black holes but was not involved in the research. “This result is a real tour de force of multiwavelength observational astronomy.”

- ASASSN-14ko was first detected on Nov. 14, 2014, by the All-Sky Automated Survey for Supernovae (ASAS-SN), a global network of 20 robotic telescopes headquartered at Ohio State University (OSU) in Columbus. It occurred in ESO 253-3, an active galaxy over 570 million light-years away in the southern constellation Pictor. At the time, astronomers thought the outburst was most likely a supernova, a one-time event that destroys a star.

- Six years later, Payne was examining ASAS-SN data on known active galaxies as part of her thesis work. Looking at the ESO 253-3 light curve, or the graph of its brightness over time, she immediately noticed a series of evenly spaced flares – a total of 17, all separated by about 114 days. Each flare reaches its peak brightness in about five days, then steadily dims.

- Payne and her colleagues predicted that the galaxy would flare again on May 17, 2020, so they coordinated joint observations with ground- and space-based facilities, including multiwavelength measurements with Swift. ASASSN-14ko erupted right on schedule. The team has since predicted and observed subsequent flares on Sept. 7 and Dec. 20.

- The researchers also used TESS data for a detailed look at a previous flare. TESS observes swaths of the sky called sectors for about a month at a time. During the mission’s first two years, the cameras collected a full sector image every 30 minutes. These snapshots allowed the team to create a precise timeline of a flare that began on Nov. 7, 2018, tracking its emergence, rise to peak brightness, and decline in great detail.

- “TESS provided a very thorough picture of that particular flare, but because of the way the mission images the sky, it can’t observe all of them,” said co-author Patrick Vallely, an ASAS-SN team member and National Science Foundation graduate research fellow at OSU. “ASAS-SN collects less detail on individual outbursts, but provides a longer baseline, which was crucial in this case. The two surveys complement one another.”

- Using measurements from ASAS-SN, TESS, Swift and other observatories, including NASA’s NuSTAR and the European Space Agency’s XMM-Newton, Payne and her team came up with three possible explanations for the repeating flares.

- One scenario involved interactions between the disks of two orbiting supermassive black holes at the galaxy’s center. Recent measurements, also under scientific review, suggest the galaxy does indeed host two such objects, but they don’t orbit closely enough to account for the frequency of the flares.

- The second scenario the team considered was a star passing on an inclined orbit through a black hole’s disk. In that case, scientists would expect to see asymmetrically shaped flares caused when the star disturbs the disk twice, on either side of the black hole. But the flares from this galaxy all have the same shape.

- The third scenario, and the one the team thinks most likely, is a partial tidal disruption event.

- A tidal disruption event occurs when an unlucky star strays too close to a black hole. Gravitational forces create intense tides that break the star apart into a stream of gas. The trailing part of the stream escapes the system, while the leading part swings back around the black hole. Astronomers see bright flares from these events when the shed gas strikes the black hole’s accretion disk.

- In this case, the astronomers suggest that one of the galaxy’s supermassive black holes, one with about 78 million times the Sun’s mass, partially disrupts an orbiting giant star. The star’s orbit isn’t circular, and each time it passes closest to the black hole, it bulges outward, shedding mass but not completely breaking apart. Every encounter strips away an amount of gas equal to about three times the mass of Jupiter.

- Astronomers don’t know how long the flares will persist. The star can’t lose mass forever, and while scientists can estimate the amount of mass it loses during each orbit, they don’t know how much it had before the disruptions began.

- Payne and her team plan to continue observing the event’s predicted outbursts, including upcoming dates in April and August 2021. They’ll also be able to examine another measurement from TESS, which captured the Dec. 20 flare with its updated 10-minute snapshot rate.

- “TESS was primarily designed to find worlds beyond our solar system,” said Padi Boyd, the TESS project scientist at Goddard. “But the mission is also teaching us more about stars in our own galaxy, including how they pulse and eclipse each other. In distant galaxies, we’ve seen stars end their lives in supernova explosions. TESS has even previously observed a complete tidal disruption event. We’re always looking forward to the next exciting and surprising discoveries the mission will make.”

- TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA's Goddard Space Flight Center. Additional partners include Northrop Grumman, based in Falls Church, Virginia; NASA’s Ames Research Center in California’s Silicon Valley; the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts; MIT’s Lincoln Laboratory; and the Space Telescope Science Institute in Baltimore. More than a dozen universities, research institutes, and observatories worldwide are participants in the mission.

- Goddard manages the Swift mission in collaboration with Penn State in University Park, the Los Alamos National Laboratory in New Mexico, and Northrop Grumman Innovation Systems in Dulles, Virginia. Other partners include the University of Leicester and Mullard Space Science Laboratory in the United Kingdom, Brera Observatory and the Italian Space Agency in Italy.

• September 16, 2020: An international team of astronomers, using NASA’s Transiting Exoplanet Survey Satellite (TESS) and retired Spitzer Space Telescope, has reported what may be the first intact planet found closely orbiting a white dwarf, the dense leftover of a Sun-like star, only 40% larger than Earth. 33) 34)

- The Jupiter-size object, called WD 1856 b, is about seven times larger than the white dwarf, named WD 1856+534. It circles this stellar cinder every 34 hours, more than 60 times faster than Mercury orbits our Sun.

- “WD 1856 b somehow got very close to its white dwarf and managed to stay in one piece,” said Andrew Vanderburg, an assistant professor of astronomy at the University of Wisconsin-Madison. “The white dwarf creation process destroys nearby planets, and anything that later gets too close is usually torn apart by the star’s immense gravity. We still have many questions about how WD 1856 b arrived at its current location without meeting one of those fates.”

- A paper about the system, led by Vanderburg and including several NASA co-authors, appears in the Sept. 17 issue of Nature and is now available online.

- TESS monitors large swaths of the sky, called sectors, for nearly a month at a time. This long gaze allows the satellite to find exoplanets, or worlds beyond our solar system, by capturing changes in stellar brightness caused when a planet crosses in front of, or transits, its star.

- The satellite spotted WD 1856 b about 80 light-years away in the northern constellation Draco. It orbits a cool, quiet white dwarf that is roughly 11,000 miles (18,000 km) across, may be up to 10 billion years old, and is a distant member of a triple star system.

Figure 30: In this illustration, WD 1856 b, a potential Jupiter-size planet, orbits its much smaller host star, a dim white dwarf (image credit: NASA’s Goddard Space Flight Center)
Figure 30: In this illustration, WD 1856 b, a potential Jupiter-size planet, orbits its much smaller host star, a dim white dwarf (image credit: NASA’s Goddard Space Flight Center)

- When a Sun-like star runs out of fuel, it swells up to hundreds to thousands of times its original size, forming a cooler red giant star. Eventually, it ejects its outer layers of gas, losing up to 80% of its mass. The remaining hot core becomes a white dwarf. Any nearby objects are typically engulfed and incinerated during this process, which in this system would have included WD 1856 b in its current orbit. Vanderburg and his colleagues estimate the possible planet must have originated at least 50 times farther away from its present location.

Figure 31: Watch to learn how a possible giant planet may have survived its tiny star’s chaotic history. Jupiter-size WD 1856 b is nearly seven times larger than the white dwarf it orbits every day and a half. Astronomers discovered it using data from NASA’s Transiting Exoplanet Survey Satellite (TESS) and now-retired Spitzer Space Telescope (image credits: NASA/JPL-Caltech/Goddard Space Flight Center)

- “We’ve known for a long time that after white dwarfs are born, distant small objects such as asteroids and comets can scatter inward towards these stars. They’re usually pulled apart by a white dwarf's strong gravity and turn into a debris disk,” said co-author Siyi Xu, an assistant astronomer at the international Gemini Observatory in Hilo, Hawaii, which is a program of the National Science Foundation’s NOIRLab. “That’s why I was so excited when Andrew told me about this system. We’ve seen hints that planets could scatter inward, too, but this appears to be the first time we’ve seen a planet that made the whole journey intact.”

- The team suggests several scenarios that could have nudged WD 1856 b onto an elliptical path around the white dwarf. This trajectory would have become more circular over time as the star’s gravity stretched the object, creating enormous tides that dissipated its orbital energy.

- “The most likely case involves several other Jupiter-size bodies close to WD 1856 b’s original orbit,” said co-author Juliette Becker, a 51 Pegasi b Fellow in planetary science at Caltech (California Institute of Technology) in Pasadena. “The gravitational influence of objects that big could easily allow for the instability you’d need to knock a planet inward. But at this point, we still have more theories than data points.”

- Other possible scenarios involve the gradual gravitational tug of the two other stars in the system, red dwarfs G229-20 A and B, over billions of years and a flyby from a rogue star perturbing the system. Vanderburg’s team thinks these and other explanations are less likely because they require finely tuned conditions to achieve the same effects as the potential giant companion planets.

- Jupiter-size objects can occupy a huge range of masses, from planets only a few times more massive than Earth to low-mass stars thousands of times Earth’s mass. Others are brown dwarfs, which straddle the line between planet and star. Usually scientists turn to radial velocity observations to measure an object’s mass, which can hint at its composition and nature. This method works by studying how an orbiting object tugs on its star and alters the color of its light. But in this case, the white dwarf is so old that its light has become both too faint and too featureless for scientists to detect noticeable changes.

- Instead, the team observed the system in the infrared using Spitzer, just a few months before the telescope was decommissioned. If WD 1856 b were a brown dwarf or low-mass star, it would emit its own infrared glow. This means Spitzer would record a brighter transit than it would if the object was a planet, which would block rather than emit light. When the researchers compared the Spitzer data to visible light transit observations taken with the Gran Telescopio Canarias in Spain’s Canary Islands, they saw no discernible difference. That, combined with the age of the star and other information about the system, led them to conclude that WD 1856 b is most likely a planet no more than 14 times Jupiter’s size. Future research and observations may be able to confirm this conclusion.

- Finding a possible world closely orbiting a white dwarf prompted co-author Lisa Kaltenegger, Vanderburg, and others to consider the implications for studying atmospheres of small rocky worlds in similar situations. For example, suppose that an Earth-size planet were located within the range of orbital distances around WD 1856 where water could exist on its surface. Using simulated observations, the researchers show that NASA’s upcoming James Webb Space Telescope could detect water and carbon dioxide on the hypothetical world by observing just five transits.

- The results of these calculations, led by Kaltenegger and Ryan MacDonald, both at Cornell University in Ithaca, New York, have been published in The Astrophysical Journal Letters and are available online.

- “Even more impressively, Webb could detect gas combinations potentially indicating biological activity on such a world in as few as 25 transits,” said Kaltenegger, the director of Cornell’s Carl Sagan Institute. “WD 1856 b suggests planets may survive white dwarfs’ chaotic histories. In the right conditions, those worlds could maintain conditions favorable for life longer than the time scale predicted for Earth. Now we can explore many new intriguing possibilities for worlds orbiting these dead stellar cores.”

- There is currently no evidence suggesting there are other worlds in the system, but it’s possible additional planets exist and haven’t been detected yet. They could have orbits that exceed the time TESS observes a sector or are tipped in a way such that transits don’t occur. The white dwarf is also so small that the possibility of catching transits from planets farther out in the system is very low.

• August 12, 2020: On July 4, NASA’s Transiting Exoplanet Survey Satellite (TESS) finished its primary mission, imaging about 75% of the starry sky as part of a two-year-long survey. In capturing this giant mosaic, TESS has found 66 new exoplanets, or worlds beyond our solar system, as well as nearly 2,100 candidates astronomers are working to confirm. 35)

- “TESS is producing a torrent of high-quality observations providing valuable data across a wide range of science topics,” said Patricia Boyd, the project scientist for TESS at NASA's Goddard Space Flight Center in Greenbelt, Maryland. “As it enters its extended mission, TESS is already a roaring success.”

 
Figure 32: NASA’s Transiting Exoplanet Survey Satellite (TESS) has completed its two-year primary mission and is continuing its search for new worlds. Watch to review some of TESS’s most interesting discoveries so far (video credits: NASA’s Goddard Space Flight Center)

- TESS monitors 24 x 96º strips of the sky called sectors for about a month using its four cameras. The mission spent its first year observing 13 sectors comprising the southern sky and then spent another year imaging the northern sky.

- Now in its extended mission, TESS has turned around to resume surveying the south. In addition, the TESS team has introduced improvements to the way the satellite collects and processes data. Its cameras now capture a full image every 10 minutes, three times faster than during the primary mission. A new fast mode allows the brightness of thousands of stars to be measured every 20 seconds, along with the previous method of collecting these observations from tens of thousands of stars every two minutes. The faster measurements will allow TESS to better resolve brightness changes caused by stellar oscillations and to capture explosive flares from active stars in greater detail.

- These changes will remain in place for the duration of the extended mission, which will be completed in September 2022. After spending a year imaging the southern sky, TESS will take another 15 months to collect additional observations in the north and to survey areas along the ecliptic – the plane of Earth’s orbit around the Sun – that the satellite has not yet imaged.

- TESS looks for transits, the telltale dimming of a star caused when an orbiting planet passes in front of it from our point of view. Among the mission’s newest planetary discoveries are its first Earth-size world, named TOI 700 d, which is located in the habitable zone of its star, the range of distances where conditions could be just right to allow liquid water on the surface. TESS revealed a newly minted planet around the young star AU Microscopii and found a Neptune-size world orbiting two suns.

- In addition to its planetary discoveries, TESS has observed the outburst of a comet in our solar system, as well as numerous exploding stars. The satellite discovered surprise eclipses in a well-known binary star system, solved a mystery about a class of pulsating stars, and explored a world experiencing star-modulated seasons. Even more remarkable, TESS watched as a black hole in a distant galaxy shredded a Sun-like star.

- Missions like TESS help contribute to the field of astrobiology, the interdisciplinary research on the variables and conditions of distant worlds that could harbor life as we know it, and what form that life could take.

- TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA's Goddard Space Flight Center. Additional partners include Northrop Grumman, based in Falls Church, Virginia; NASA’s Ames Research Center in California’s Silicon Valley; the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts; MIT’s Lincoln Laboratory; and the Space Telescope Science Institute in Baltimore. More than a dozen universities, research institutes, and observatories worldwide are participants in the mission.

• June 30, 2020: Measurements from NASA's TESS have enabled astronomers to greatly improve their understanding of the bizarre environment of KELT-9 b, one of the hottest planets known. 36)

- “The weirdness factor is high with KELT-9 b,” said John Ahlers, an astronomer at USRA (Universities Space Research Association) in Columbia, Maryland, and NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It’s a giant planet in a very close, nearly polar orbit around a rapidly rotating star, and these features complicate our ability to understand the star and its effects on the planet.”

 
Figure 33: Explore KELT-9 b, one of the hottest planets known. Observations from NASA's Transiting Exoplanet Survey Satellite (TESS) have revealed new details about the planet’s environment. The planet follows a close, polar orbit around a squashed star with different surface temperatures, factors that make peculiar seasons for KELT-9 b (video credit: NASA's Goddard Space Flight Center)

- The new findings appear in a paper led by Ahlers published on June 5 in The Astronomical Journal. 37)

- Located about 670 light-years away in the constellation Cygnus, KELT-9 b was discovered in 2017 because the planet passed in front of its star for a part of each orbit, an event called a transit. Transits regularly dim the star’s light by a small but detectable amount. The transits of KELT-9 b were first observed by the KELT transit survey, a project that collected observations from two robotic telescopes located in Arizona and South Africa.

- Between July 18 and Sept. 11, 2019, as part of the mission’s yearlong campaign to observe the northern sky, TESS observed 27 transits of KELT-9 b, taking measurements every two minutes. These observations allowed the team to model the system’s unusual star and its impact on the planet.

- KELT-9 b is a gas giant world about 1.8 times bigger than Jupiter, with 2.9 times its mass. Tidal forces have locked its rotation so the same side always faces its star. The planet swings around its star in just 36 hours on an orbit that carries it almost directly above both of the star’s poles.

- KELT-9 b receives 44,000 times more energy from its star than Earth does from the Sun. This makes the planet’s dayside temperature around 7,800º Fahrenheit (4,300º C), hotter than the surfaces of some stars. This intense heating also causes the planet’s atmosphere to stream away into space.

- Its host star is an oddity, too. It’s about twice the size of the Sun and averages about 56 percent hotter. But it spins 38 times faster than the Sun, completing a full rotation in just 16 hours. Its rapid spin distorts the star’s shape, flattening it at the poles and widening its midsection. This causes the star’s poles to heat up and brighten while its equatorial region cools and dims — a phenomenon called gravity darkening. The result is a temperature difference across the star’s surface of almost 1,500º F (800º C).

- With each orbit, KELT-9 b twice experiences the full range of stellar temperatures, producing what amounts to a peculiar seasonal sequence. The planet experiences “summer” when it swings over each hot pole and “winter” when it passes over the star’s cooler midsection. So KELT-9 b experiences two summers and two winters every year, with each season about nine hours.

- “It’s really intriguing to think about how the star’s temperature gradient impacts the planet,” said Goddard’s Knicole Colón, a co-author of the paper. “The varying levels of energy received from its star likely produce an extremely dynamic atmosphere.”

- KELT-9 b's polar orbit around its flattened star produces distinctly lopsided transits. The planet begins its transit near the star's bright poles and then blocks less and less light as it travels over the star's dimmer equator. This asymmetry provides clues to the temperature and brightness changes across the star’s surface, and they permitted the team to reconstruct the star’s out-of-round shape, how it’s oriented in space, its range of surface temperatures, and other factors impacting the planet.

- “Of the planetary systems that we've studied via gravity darkening, the effects on KELT-9 b are by far the most spectacular,” said Jason Barnes, a professor of physics at the University of Idaho and a co-author of the paper. “This work goes a long way toward unifying gravity darkening with other techniques that measure planetary alignment, which in the end we hope will tease out secrets about the formation and evolutionary history of planets around high-mass stars.”

Figure 34: This illustration shows how planet KELT-9 b sees its host star. Over the course of a single orbit, the planet twice experiences cycles of heating and cooling caused by the star’s unusual pattern of surface temperatures. Between the star’s hot poles and cool equator, temperatures vary by about 1,500ºF (800ºC). This produces a “summer” when the planet faces a pole and a “winter” when it faces the cooler midsection. So every 36 hours, KELT-9 b experiences two summers and two winters [image credit: NASA's Goddard Space Flight Center/Chris Smith (USRA)]
Figure 34: This illustration shows how planet KELT-9 b sees its host star. Over the course of a single orbit, the planet twice experiences cycles of heating and cooling caused by the star’s unusual pattern of surface temperatures. Between the star’s hot poles and cool equator, temperatures vary by about 1,500ºF (800ºC). This produces a “summer” when the planet faces a pole and a “winter” when it faces the cooler midsection. So every 36 hours, KELT-9 b experiences two summers and two winters [image credit: NASA's Goddard Space Flight Center/Chris Smith (USRA)]

• June 24, 2020: For more than a decade, astronomers have searched for planets orbiting AU Microscopii, a nearby star still surrounded by a disk of debris left over from its formation. Now scientists using data from NASA's Transiting Exoplanet Survey Satellite (TESS) and retired Spitzer Space Telescope report the discovery of a planet about as large as Neptune that circles the young star in just over a week. 38)

- The system, known as AU Mic for short, provides a one-of-kind laboratory for studying how planets and their atmospheres form, evolve and interact with their stars.

Figure 35: This animated gif is an artist's concept of the planet AU Mic b and its young parent star. The faint band of light encircling the pair is a disk of gas and dust from which both the star and the planet formed [image credit: NASA's Goddard Space Flight Center/Chris Smith (USRA)]
Figure 35: This animated gif is an artist's concept of the planet AU Mic b and its young parent star. The faint band of light encircling the pair is a disk of gas and dust from which both the star and the planet formed [image credit: NASA's Goddard Space Flight Center/Chris Smith (USRA)]

- "AU Mic is a young, nearby M dwarf star. It's surrounded by a vast debris disk in which moving clumps of dust have been tracked, and now, thanks to TESS and Spitzer, it has a planet with a direct size measurement," said Bryson Cale, a doctoral student at George Mason University in Fairfax, Virginia. "There is no other known system that checks all of these important boxes."

Figure 36: NASA's TESS and Spitzer Space Telescope have found a young Neptune-size world orbiting AU Microscopii, a cool, nearby M dwarf star surrounded by a vast disk of debris. The discovery makes the system a touchstone for understanding how stars and planets form and evolve (image credit: NASA's Goddard Space Flight Center)

- The new planet, AU Mic b, is described in a paper coauthored by Cale and led by his advisor Peter Plavchan, an assistant professor of physics and astronomy at George Mason. Their report was published on Wednesday, June 24, in the journal Nature. 39)

- AU Mic b is featured in a new NASA poster available in English and Spanish, part of a Galaxy of Horrors series. The fun but informative series resulted from a collaboration of scientists and artists and was produced by NASA's Exoplanet Exploration Program Office.

- AU Mic is a cool red dwarf star with an age estimated at 20 million to 30 million years, making it a stellar infant compared to our Sun, which is at least 150 times older. The star is so young that it primarily shines from the heat generated as its own gravity pulls it inward and compresses it. Less than 10% of the star's energy comes from the fusion of hydrogen into helium in its core, the process that powers stars like our Sun.

- The system is located 31.9 light-years away in the southern constellation Microscopium. It's part of a nearby collection of stars called the Beta Pictoris Moving Group, which takes its name from a bigger, hotter A-type star that harbors two planets and is likewise surrounded by a debris disk.

- Although the systems have the same age, their planets are markedly different. The planet AU Mic b almost hugs its star, completing an orbit every 8.5 days. It weighs less than 58 times Earth's mass, placing it in the category of Neptune-like worlds. Beta Pictoris b and c, however, are both at least 50 times more massive than AU Mic b and take 21 and 3.3 years, respectively, to orbit their star.

- "We think AU Mic b formed far from the star and migrated inward to its current orbit, something that can happen as planets interact gravitationally with a gas disk or with other planets," said coauthor Thomas Barclay, an associate research scientist at the University of Maryland, Baltimore County and an associate project scientist for TESS at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "By contrast, Beta Pictoris b's orbit doesn't appear to have migrated much at all. The differences between these similarly aged systems can tell us a lot about how planets form and migrate."

- Detecting planets around stars like AU Mic poses a particular challenge. These stormy stars possess strong magnetic fields and can be covered with starspots - cooler, darker and highly magnetic regions akin to sunspots - that frequently erupt with powerful stellar flares. Both the spots and their flares contribute to the star's brightness changes.

- In July and August 2018, when TESS was observing AU Mic, the star produced numerous flares, some of which were more powerful than the strongest flares ever recorded on the Sun. The team performed a detailed analysis to remove these effects from the TESS data.

- When a planet crosses in front of its star from our perspective, an event called a transit, its passage causes a distinct dip in the star's brightness. TESS monitors large swaths of the sky, called sectors, for 27 days at a time. During this long stare, the mission's cameras regularly capture snapshots that allow scientists to track changes in stellar brightness.

- Regular dips in a star's brightness signal the possibility of a transiting planet. Usually, it takes at least two observed transits to recognize a planet's presence.

- "As luck would have it, the second of three TESS transits occurred when the spacecraft was near its closest point to Earth. At such times, TESS is not observing because it is busy downlinking all of the stored data," said coauthor Diana Dragomir, a research assistant professor at the University of New Mexico in Albuquerque. "To fill the gap, our team was granted observing time on Spitzer, which caught two additional transits in 2019 and enabled us to confirm the orbital period of AU Mic b."

- Spitzer was a multipurpose infrared observatory operating from 2003 until its decommissioning on Jan. 30, 2020. The mission proved especially adept at detecting and studying exoplanets around cool stars. Spitzer returned the AU Mic observations during its final year.

- Because the amount of light blocked by a transit depends on the planet's size and orbital distance, the TESS and Spitzer transits provide a direct measure of AU Mic b's size. Analysis of these measurements show that the planet is about 8% larger than Neptune.

- Observations from instruments on ground-based telescopes provide upper limits for the planet's mass. As a planet orbits, its gravity tugs on its host star, which moves slightly in response. Sensitive instruments on large telescopes can detect the star's radial velocity, its motion to-and-fro along our line of sight. Combining observations from the W. M. Keck Observatory and NASA's InfraRed Telescope Facility in Hawaii and the European Southern Observatory in Chile, the team concluded that AU Mic b has a mass smaller than 58 Earths.

- This discovery shows the power of TESS to provide new insights into well-studied stars like AU Mic, where more planets may be waiting to be found.

- "There is an additional candidate transit event seen in the TESS data, and TESS will hopefully revisit AU Mic later this year in its extended mission," Plavchan said. "We are continuing to monitor the star with precise radial velocity measurements, so stay tuned."

- For decades, AU Mic has intrigued astronomers as a possible home for planets thanks to its proximity, youth and bright debris disk. Now that TESS and Spitzer have found one there, the story comes full circle. AU Mic is a touchstone system, a nearby laboratory for understanding the formation and evolution of stars and planets that will be studied for decades to come.

• June 22, 2020: Jupiter-size planets orbiting close to their stars have upended ideas about how giant planets form. Finding young members of this planet class could help answer key questions. 40)

- For most of human history our understanding of how planets form and evolve was based on the eight (or nine) planets in our solar system. But over the last 25 years, the discovery of more than 4,000 exoplanets, or planets outside our solar system, changed all that.

Figure 37: This animation shows a type of gas giant planet known as a hot Jupiter that orbits very close to its star. Finding more of these youthful planets could help astronomers understand how they formed and if they migrate from cooler climes during their lifetimes (image credit: NASA/JPL-Caltech)
Figure 37: This animation shows a type of gas giant planet known as a hot Jupiter that orbits very close to its star. Finding more of these youthful planets could help astronomers understand how they formed and if they migrate from cooler climes during their lifetimes (image credit: NASA/JPL-Caltech)

- Among the most intriguing of these distant worlds is a class of exoplanets called hot Jupiters. Similar in size to Jupiter, these gas-dominated planets orbit extremely close to their parent stars, circling them in as few as 18 hours. We have nothing like this in our own solar system, where the closest planets to the Sun are rocky and orbiting much farther away. The questions about hot Jupiters are as big as the planets themselves: Do they form close to their stars or farther away before migrating inward? And if these giants do migrate, what would that reveal about the history of the planets in our own solar system?

- To answer those questions, scientists will need to observe many of these hot giants very early in their formation. Now, a new study in the Astronomical Journal reports on the detection of the exoplanet HIP 67522 b, which appears to be the youngest hot Jupiter ever found. It orbits a well-studied star that is about 17 million years old, meaning the hot Jupiter is likely only a few million years younger, whereas most known hot Jupiters are more than a billion years old. The planet takes about seven days to orbit its star, which has a mass similar to the Sun's. Located only about 490 light-years from Earth, HIP 67522 b is about 10 times the diameter of Earth, or close to that of Jupiter. Its size strongly indicates that it is a gas-dominated planet. 41)

- HIP 67522 b was identified as a planet candidate by NASA's Transiting Exoplanet Survey Satellite (TESS), which detects planets via the transit method: Scientists look for small dips in the brightness of a star, indicating that an orbiting planet has passed between the observer and the star. But young stars tend to have a lot of dark splotches on their surfaces — starspots, also called sunspots when they appear on the Sun — that can look similar to transiting planets. So scientists used data from NASA's recently retired infrared observatory, the Spitzer Space Telescope, to confirm that the transit signal was from a planet and not a starspot. (Other methods of exoplanet detection have yielded hints at the presence of even younger hot Jupiters, but none have been confirmed.)

- The discovery offers hope for finding more young hot Jupiters and learning more about how planets form throughout the universe — even right here at home.

- We can learn a lot about our solar system and its history by studying the planets and other things orbiting the Sun," said Aaron Rizzuto, an exoplanet scientist at the University of Texas at Austin who led the study. "But we will never know how unique or how common our solar system is unless we're out there looking for exoplanets. Exoplanet scientists are finding out how our solar system fits in the bigger picture of planet formation in the universe."

Migrating Giants?

- There are three main hypotheses for how hot Jupiters get so close to their parent stars. One is that they simply form there and stay put. But it's hard to imagine planets forming in such an intense environment. Not only would the scorching heat vaporize most materials, but young stars frequently erupt with massive explosions and stellar winds, potentially dispersing any newly emerging planets.

- It seems more likely that gas giants develop farther from their parent star, past a boundary called the snow line, where it's cool enough for ice and other solid materials to form. Jupiter-like planets are composed almost entirely of gas, but they contain solid cores. It would be easier for those cores to form past the snow line, where frozen materials could cling together like a growing snowball.

- The other two hypotheses assume this is the case, and that hot Jupiters then wander closer to their stars. But what would be the cause and timing of the migration?

- One idea posits that hot Jupiters begin their journey early in the planetary system's history while the star is still surrounded by the disk of gas and dust from which both it and the planet formed. In this scenario, the gravity of the disk interacting with the mass of the planet could interrupt the gas giant's orbit and cause it to migrate inward.

- The third hypothesis maintains that hot Jupiters get close to their star later, when the gravity of other planets around the star can drive the migration. The fact that HIP 67522 b is already so close to its star so early after its formation indicates that this third hypothesis probably doesn't apply in this case. But one young hot Jupiter isn't enough to settle the debate on how they all form.

- "Scientists would like to know if there is a dominant mechanism that forms most hot Jupiters," said Yasuhiro Hasegawa, an astrophysicist specializing in planet formation at NASA's Jet Propulsion Laboratory who was not involved in the study. "In the community right now there is no clear consensus about which formation hypothesis is most important for reproducing the population we have observed. The discovery of this young hot Jupiter is exciting, but it's only a hint at the answer. To solve the mystery, we will need more."

- TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA's Goddard Space Flight Center. Additional partners include Northrop Grumman, based in Falls Church, Virginia; NASA's Ames Research Center in California's Silicon Valley; the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts; MIT's Lincoln Laboratory; and the Space Telescope Science Institute in Baltimore. More than a dozen universities, research institutes and observatories worldwide are participants in the mission.

- NASA's Spitzer Space Telescope was retired on Jan. 30, 2020. Science data continues to be analyzed by the science community via the Spitzer data archive located at the Infrared Science Archive housed at IPAC at Caltech in Pasadena, California. JPL managed Spitzer mission operations for NASA's Science Mission Directorate in Washington. Science operations were conducted at the Spitzer Science Center at IPAC at Caltech. Spacecraft operations were based at Lockheed Martin Space in Littleton, Colorado. Caltech manages JPL for NASA.

• May 13, 2020: Astronomers have detected elusive pulsation patterns in dozens of young, rapidly rotating stars thanks to data from NASA’s Transiting Exoplanet Survey Satellite (TESS). The discovery will revolutionize scientists’ ability to study details like the ages, sizes and compositions of these stars — all members of a class named for the prototype, the bright star Delta Scuti. 42)

- “Delta Scuti stars clearly pulsate in interesting ways, but the patterns of those pulsations have so far defied understanding,” said Tim Bedding, a professor of astronomy at the University of Sydney. “To use a musical analogy, many stars pulsate along simple chords, but Delta Scuti stars are complex, with notes that seem to be jumbled. TESS has shown us that’s not true for all of them.”

- A paper describing the findings, led by Bedding, appears in the May 14 issue of the journal Nature and is now available online. 43)

 
Figure 38: Watch the pulsations of a Delta Scuti star! In this illustration, the star changes in brightness when internal sound waves at different frequencies cause parts of the star to expand and contract. In one pattern, the whole star expands and contracts, while in a second, opposite hemispheres swell and shrink out of sync. In reality, a single star exhibits many pulsation patterns that can tell astronomers about its age, composition and internal structure. The exact light variations astronomers observe also depend on how the star's spin axis angles toward us. Delta Scuti stars spin so rapidly they flatten into ovals, which jumbles these signals and makes them harder to decode. Now, thanks to NASA's Transiting Exoplanet Survey Satellite, astronomers are deciphering some of them (video credit: NASA's Goddard Space Flight Center)

- Geologists studying seismic waves from earthquakes figured out Earth’s internal structure from the way the reverberations changed speed and direction as they traveled through it. Astronomers apply the same principle to study the interiors of stars through their pulsations, a field called asteroseismology.

- Sound waves travel through a star’s interior at speeds that change with depth, and they all combine into pulsation patterns at the star’s surface. Astronomers can detect these patterns as tiny fluctuations in brightness and use them to determine the star’s age, temperature, composition, internal structure and other properties.

- Delta Scuti stars are between 1.5 and 2.5 times the Sun’s mass. They’re named after Delta Scuti, a star visible to the human eye in the southern constellation Scutum that was first identified as variable in 1900. Since then, astronomers have identified thousands more like Delta Scuti, many with NASA’s Kepler space telescope, another planet-hunting mission that operated from 2009 to 2018.

- But scientists have had trouble interpreting Delta Scuti pulsations. These stars generally rotate once or twice a day, at least a dozen times faster than the Sun. The rapid rotation flattens the stars at their poles and jumbles the pulsation patterns, making them more complicated and difficult to decipher.

- To determine if order exists in Delta Scuti stars’ apparently chaotic pulsations, astronomers needed to observe a large set of stars multiple times with rapid sampling. TESS monitors large swaths of the sky for 27 days at a time, taking one full image every 30 minutes with each of its four cameras. This observing strategy allows TESS to track changes in stellar brightness caused by planets passing in front of their stars, which is its primary mission, but half-hour exposures are too long to catch the patterns of the more rapidly pulsating Delta Scuti stars. Those changes can happen in minutes.

Figure 39: Sound waves bouncing around inside a star cause it to expand and contract, which results in detectable brightness changes. This animation depicts one type of Delta Scuti pulsation — called a radial mode — that is driven by waves (blue arrows) traveling between the star’s core and surface. In reality, a star may pulsate in many different modes, creating complicated patterns that enable scientists to learn about its interior (image credit: NASA's Goddard Space Flight Center)
Figure 39: Sound waves bouncing around inside a star cause it to expand and contract, which results in detectable brightness changes. This animation depicts one type of Delta Scuti pulsation — called a radial mode — that is driven by waves (blue arrows) traveling between the star’s core and surface. In reality, a star may pulsate in many different modes, creating complicated patterns that enable scientists to learn about its interior (image credit: NASA's Goddard Space Flight Center)

- But TESS also captures snapshots of a few thousand pre-selected stars — including some Delta Scuti stars — every two minutes. When Bedding and his colleagues began sorting through the measurements, they found a subset of Delta Scuti stars with regular pulsation patterns. Once they knew what to look for, they searched for other examples in data from Kepler, which used a similar observing strategy. They also conducted follow-up observations with ground-based telescopes, including one at the W.M. Keck Observatory in Hawaii and two in the global Las Cumbres Observatory network. In total, they identified a batch of 60 Delta Scuti stars with clear patterns.

- “This really is a breakthrough. Now we have a regular series of pulsations for these stars that we can understand and compare with models,” said co-author Simon Murphy, a postdoctoral researcher at the University of Sydney. “It’s going to allow us to measure these stars using asteroseismology in a way that we’ve never been able to do. But it’s also shown us that this is just a stepping-stone in our understanding of Delta Scuti stars.”

- Pulsations in the well-behaved Delta Scuti group fall into two major categories, both caused by energy being stored and released in the star. Some occur as the whole star expands and contracts symmetrically. Others occur as opposite hemispheres alternatively expand and contract. Bedding’s team inferred the alterations by studying each star’s fluctuations in brightness.

- The data have already helped settle a debate over the age of one star, called HD 31901, a member of a recently discovered stream of stars orbiting within our galaxy. Scientists placed the age of the overall stream at 1 billion years, based on the age of a red giant they suspected belonged to the same group. A later estimate, based on the rotation periods of other members of the stellar stream, suggested an age of only about 120 million years. Bedding’s team used the TESS observations to create an asteroseismic model of HD 31901 that supports the younger age.

 
Figure 40: Hear the rapid beat of HD 31901, a Delta Scuti star in the southern constellation Lepus. The sound is the result of 55 pulsation patterns TESS observed over 27 days sped up by 54,000 times. Delta Scuti stars have long been known for their apparently random pulsations, but TESS data show that some, like HD 31901, have more orderly patterns (video credits: NASA's Goddard Space Flight Center and Simon Murphy, University of Sydney)

- "Delta Scuti stars have been frustrating targets because of their complicated oscillations, so this is a very exciting discovery," said Sarbani Basu, a professor of astronomy at Yale University in New Haven, Connecticut, who studies asteroseismology but was not involved in the study. "Being able to find simple patterns and identify the modes of oscillation is game changing. Since this subset of stars allows normal seismic analyses, we will finally be able to characterize them properly."

- The team thinks their set of 60 stars has clear patterns because they’re younger than other Delta Scuti stars, having only recently settled into producing all of their energy through nuclear fusion in their cores. The pulsations occur more rapidly in the fledgling stars. As the stars age, the frequency of the pulsations slows, and they become jumbled with other signals.

- Another factor may be TESS’s viewing angle. Theoretical calculations predict that a spinning star’s pulsation patterns should be simpler when its rotational pole faces us instead of its equator. The team’s TESS data set included around 1,000 Delta Scuti stars, which means that some of them, by chance, must be viewed close to pole-on.

- Scientists will continue to develop their models as TESS begins taking full images every 10 minutes instead of every half hour in July. Bedding said the new observing strategy will help capture the pulsations of even more Delta Scuti stars.

- “We knew when we designed TESS that, in addition to finding many exciting new exoplanets, the satellite would also advance the field of asteroseismology,” said TESS Principal Investigator George Ricker at the Massachusetts Institute of Technology’s Kavli Institute for Astrophysics and Space Research in Cambridge. “The mission has already found a new type of star that pulsates on one side only and has unearthed new facts about well-known stars. As we complete the initial two-year mission and commence the extended mission, we’re looking forward to a wealth of new stellar discoveries TESS will make.”

- TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA's Goddard Space Flight Center. Additional partners include Northrop Grumman, based in Falls Church, Virginia; NASA’s Ames Research Center in California’s Silicon Valley; the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts; MIT’s Lincoln Laboratory; and the Space Telescope Science Institute in Baltimore. More than a dozen universities, research institutes and observatories worldwide are participants in the mission.

• March 9, 2020: Scientists at the Center for Astrophysics | Harvard & Smithsonian have, for the first time, measured the orbital tilt of an exoplanet younger than 45 million years. While observing DS Tuc Ab—a recently discovered, young, Neptune-sized planet with an orbital period of eight days—scientists developed new modeling techniques to take stellar obliquity measurements and demographic information about the planet. 44)

- "The discovery of DS Tuc Ab in 2019 gave us a unique opportunity to take measurements of a planet around a very young star very soon after the planet's formation," said George Zhou, astronomer at CfA. "This planet is only 40 million years old; by comparison, our Solar System is 5 billion years old. We've never had a planet so young that we can study in this fashion before."

Figure 41: At 40 million years old, DS Tuc Ab is now the youngest planet for which scientists have measured orbital tilt. Scientists used the young star as a proving ground for new modeling techniques measuring stellar obliquity and planetary demographics (image credit: M. Weiss)
Figure 41: At 40 million years old, DS Tuc Ab is now the youngest planet for which scientists have measured orbital tilt. Scientists used the young star as a proving ground for new modeling techniques measuring stellar obliquity and planetary demographics (image credit: M. Weiss)

- After a few billion years have passed planets change, making it more difficult for scientists to answer questions about the formation, life and maturation of planets. "A lot of things can happen between when a planet is formed and when we see them. The vast majority of planets we find are already mature and we don't know what they were like when they were young," said Zhou. "We've already learned that unlike other planets, DS Tuc Ab didn't pinball, or get flung into, its star system. That opens up many other possibilities for other similar, young exoplanets, and may help us to better understand older planets we already know about."

- According to Zhou, the host star, DS Tuc A, was covered up to 40% in star spots, making observation and analysis of the young planet difficult. "Young stars don’t behave nicely, and this is a really young star," said Zhou. "It is very active, and the star spots initially made it difficult to take accurate data since the planet was crossing our line of sight across the face of the star."

- To combat these challenges and characterize the planet and star system, scientists developed a new technique for simultaneously modeling the many different factors involved, allowing them to better track the young planet in its orbit.

- "We had to infer how many spots there were, their size, and their color. Each time we'd add a star spot, we'd check its consistency with everything we already knew about the planet," said David Latham, CfA. "As TESS finds more young stars like DS Tuc A, where the shadow of a transiting planet is hidden by variations due to star spots, this new technique for uncovering the signal of the planet will lead to a better understanding of the early history of planets in their infancy."

- DS Tuc Ab was first discovered by scientists at Dartmouth, CfA, and MIT, using data from NASA's TESS mission in 2019. "We were excited when we first saw this planet's signal," said Dr. Elisabeth Newton, Assistant Professor, Dartmouth. "The star is bright and young, and we knew it would offer exciting possibilities for in-depth investigations like this one." A parallel discovery paper was published by scientists at INAF—the National Institute for Astrophysics in Italy—the same year.

- Zhou and scientists from the CfA began observing the planet in August 2019, using the Planet Finder Spectrograph on the Magellan Telescope in Chile. Results from the study will be published in the Astrophysical Journal Letters. A companion study from Benjamin Montet (U. New South Wales) et al. will be published in the Astronomical Journal. 45)

• January 7, 2020: Astronomers using data from NASA’s Transiting Exoplanet Survey Satellite (TESS) have shown that Alpha Draconis, a well-studied star visible to the naked eye, and its fainter companion star regularly eclipse each other. While astronomers previously knew this was a binary system, the mutual eclipses came as a complete surprise. 46)

- “The first question that comes to mind is ‘how did we miss this?’” said Angela Kochoska, a postdoctoral researcher at Villanova University in Pennsylvania who presented the findings at the 235th meeting of the American Astronomical Society in Honolulu on Jan. 6. “The eclipses are brief, lasting only six hours, so ground-based observations can easily miss them. And because the star is so bright, it would have quickly saturated detectors on NASA’s Kepler observatory, which would also mask the eclipses.”

 
Figure 42: This animation illustrates a preliminary model of the Thuban system, now known to be an eclipsing binary thanks to data from NASA’s Transiting Exoplanet Survey Satellite (TESS). The stars orbit every 51.4 days at an average distance slightly greater than Mercury’s distance from the Sun. We view the system about three degrees above the stars’ orbital plane, so they undergo mutual eclipses, but neither is ever completely covered up by its partner. The primary star is 4.3 times bigger than the Sun and has a surface temperature around 17,500º Fahrenheit (9,700ºC), making it 70% hotter than our Sun. Its companion, which is five times fainter, is most likely half the primary’s size and 40% hotter than the Sun. Thuban, also called Alpha Draconis, is located about 270 light-years away in the northern constellation Draco [video credit: NASA’s Goddard Space Flight Center/Chris Smith (USRA)]

- The system ranks among the brightest-known eclipsing binaries where the two stars are widely separated, or detached, and only interact gravitationally. Such systems are important because astronomers can measure the masses and sizes of both stars with unrivaled accuracy.

- Alpha Draconis, also known as Thuban, lies about 270 light-years away in the northern constellation Draco. Despite its “alpha” designation, it shines as Draco’s fourth-brightest star. Thuban’s fame arises from a historical role it played some 4,700 years ago, back when the earliest pyramids were being built in Egypt.

- At that time, it appeared as the North Star, the one closest to the northern pole of Earth’s spin axis, the point around which all of the other stars appear to turn in their nightly motion. Today, this role is played by Polaris, a brighter star in the constellation Ursa Minor. The change happened because Earth’s spin axis performs a cyclic 26,000-year wobble, called precession, that slowly alters the sky position of the rotational pole.

- TESS monitors large swaths of the sky, called sectors, for 27 days at a time. This long stare allows the satellite to track changes in stellar brightness. While NASA’s newest planet hunter mainly seeks dimmings caused by planets crossing in front of their stars, TESS data can be used to study many other phenomena as well.

- A 2004 report suggested that Thuban displayed small brightness changes that cycled over about an hour, suggesting the possibility that the system’s brightest star was pulsating.

- To check this, Timothy Bedding, Daniel Hey, and Simon Murphy at the University of Sydney, Australia, and Aarhus University, Denmark, turned to TESS measurements. In October, they published a paper that described the discovery of eclipses by both stars and ruling out the existence of pulsations over periods less than eight hours.

- Now Kochoska is working with Hey to understand the system in greater detail. “I've been collaborating with Daniel to model the eclipses and advising on how to bring together more data to better constrain our model.” Kochoska explained. “The two of us took different approaches to modeling the system, and we hope our efforts will result in its full characterization.”

- As known from earlier studies, the stars orbit every 51.4 days at an average distance of about 61 million km, slightly more than Mercury’s distance from the Sun. The current preliminary model shows that we view the system about three degrees above the stars’ orbital plane, which means neither star completely covers the other during the eclipses. The primary star is 4.3 times bigger than the Sun and has a surface temperature around 17,500 ºF (9,700ºC), making it 70% hotter than our Sun. Its companion, which is five times fainter, is most likely half the primary’s size and 40% hotter than the Sun.

- Kochoska says she is planning ground-based follow-up observations and anticipating additional eclipses in future TESS sectors.

- “Discovering eclipses in a well-known, bright, historically important star highlights how TESS impacts the broader astronomical community,” said Padi Boyd, the TESS project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “In this case, the high precision, uninterrupted TESS data can be used to help constrain fundamental stellar parameters at a level we’ve never before achieved.”

Figure 43: The star Alpha Draconis (circled), also known as Thuban, has long been known to be a binary system. Now data from NASA's TESS show its two stars undergo mutual eclipses (image credit: NASA/MIT/TESS)
Figure 43: The star Alpha Draconis (circled), also known as Thuban, has long been known to be a binary system. Now data from NASA's TESS show its two stars undergo mutual eclipses (image credit: NASA/MIT/TESS)

• January 7, 2020: NASA's TESS satellite has discovered its first Earth-size planet in its star's habitable zone, the range of distances where conditions may be just right to allow the presence of liquid water on the surface. Scientists confirmed the find, called TOI 700 d, using NASA's Spitzer Space Telescope and have modeled the planet's potential environments to help inform future observations. 47)

- TOI 700 d is one of only a few Earth-size planets discovered in a star's habitable zone so far. Others include several planets in the TRAPPIST-1 system and other worlds discovered by NASA’s Kepler Space Telescope.

- “TESS was designed and launched specifically to find Earth-sized planets orbiting nearby stars,” said Paul Hertz, astrophysics division director at NASA Headquarters in Washington. “Planets around nearby stars are easiest to follow-up with larger telescopes in space and on Earth. Discovering TOI 700 d is a key science finding for TESS. Confirming the planet’s size and habitable zone status with Spitzer is another win for Spitzer as it approaches the end of science operations this January."

 
Figure 44: NASA's Transiting Exoplanet Survey Satellite (TESS) has discovered its first Earth-size planet in its star's habitable zone, the range of distances where conditions may be just right to allow the presence of liquid water on the surface. Scientists confirmed the find, called TOI 700 d, using NASA's Spitzer Space Telescope and have modeled the planet's potential environments to help inform future observations (video credit: NASA's Goddard Space Flight Center)

- TESS monitors large swaths of the sky, called sectors, for 27 days at a time. This long stare allows the satellite to track changes in stellar brightness caused by an orbiting planet crossing in front of its star from our perspective, an event called a transit.

- TOI 700 is a small, cool M dwarf star located just over 100 light-years away in the southern constellation Dorado. It’s roughly 40% of the Sun’s mass and size and about half its surface temperature. The star appears in 11 of the 13 sectors TESS observed during the mission’s first year, and scientists caught multiple transits by its three planets.

- The star was originally misclassified in the TESS database as being more similar to our Sun, which meant the planets appeared larger and hotter than they really are. Several researchers, including Alton Spencer, a high school student working with members of the TESS team, identified the error.

- “When we corrected the star’s parameters, the sizes of its planets dropped, and we realized the outermost one was about the size of Earth and in the habitable zone,” said Emily Gilbert, a graduate student at the University of Chicago. “Additionally, in 11 months of data we saw no flares from the star, which improves the chances TOI 700 d is habitable and makes it easier to model its atmospheric and surface conditions.”

- Gilbert and other researchers presented the findings at the 235th meeting of the American Astronomical Society in Honolulu, and three papers — one of which Gilbert led — have been submitted to scientific journals.

- The innermost planet, called TOI 700 b, is almost exactly Earth-size, is probably rocky and completes an orbit every 10 days. The middle planet, TOI 700 c, is 2.6 times larger than Earth — between the sizes of Earth and Neptune — orbits every 16 days and is likely a gas-dominated world. TOI 700 d, the outermost known planet in the system and the only one in the habitable zone, measures 20% larger than Earth, orbits every 37 days and receives from its star 86% of the energy that the Sun provides to Earth. All of the planets are thought to be tidally locked to their star, which means they rotate once per orbit so that one side is constantly bathed in daylight.

- A team of scientists led by Joseph Rodriguez, an astronomer at the Center for Astrophysics | Harvard & Smithsonian in Cambridge, Massachusetts, requested follow-up observations with Spitzer to confirm TOI 700 d.

- “Given the impact of this discovery — that it is TESS’s first habitable-zone Earth-size planet — we really wanted our understanding of this system to be as concrete as possible,” Rodriguez said. “Spitzer saw TOI 700 d transit exactly when we expected it to. It’s a great addition to the legacy of a mission that helped confirm two of the TRAPPIST-1 planets and identify five more.”

- The Spitzer data increased scientists’ confidence that TOI 700 d is a real planet and sharpened their measurements of its orbital period by 56% and its size by 38%. It also ruled out other possible astrophysical causes of the transit signal, such as the presence of a smaller, dimmer companion star in the system.

- Rodriguez and his colleagues also used follow-up observations from a 1-meter ground-based telescope in the global Las Cumbres Observatory network to improve scientists’ confidence in the orbital period and size of TOI 700 c by 30% and 36%, respectively.

- Because TOI 700 is bright, nearby, and shows no sign of stellar flares, the system is a prime candidate for precise mass measurements by current ground-based observatories. These measurements could confirm scientists’ estimates that the inner and outer planets are rocky and the middle planet is made of gas.

- Future missions may be able to identify whether the planets have atmospheres and, if so, even determine their compositions.

- While the exact conditions on TOI 700 d are unknown, scientists can use current information, like the planet’s size and the type of star it orbits, to generate computer models and make predictions. Researchers at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, modeled 20 potential environments of TOI 700 d to gauge if any version would result in surface temperatures and pressures suitable for habitability.

Figure 45: The three planets of the TOI 700 system orbit a small, cool M dwarf star. TOI 700 d is the first Earth-size habitable-zone world discovered by TESS (image credit: NASA's Goddard Space Flight Center)
Figure 45: The three planets of the TOI 700 system orbit a small, cool M dwarf star. TOI 700 d is the first Earth-size habitable-zone world discovered by TESS (image credit: NASA's Goddard Space Flight Center)

- Their 3D climate models examined a variety of surface types and atmospheric compositions typically associated with what scientists regard to be potentially habitable worlds. Because TOI 700 d is tidally locked to its star, the planet’s cloud formations and wind patterns may be strikingly different from Earth’s.

- One simulation included an ocean-covered TOI 700 d with a dense, carbon-dioxide-dominated atmosphere similar to what scientists suspect surrounded Mars when it was young. The model atmosphere contains a deep layer of clouds on the star-facing side. Another model depicts TOI 700 d as a cloudless, all-land version of modern Earth, where winds flow away from the night side of the planet and converge on the point directly facing the star.

- When starlight passes through a planet’s atmosphere, it interacts with molecules like carbon dioxide and nitrogen to produce distinct signals, called spectral lines. The modeling team, led by Gabrielle Engelmann-Suissa, a Universities Space Research Association visiting research assistant at Goddard, produced simulated spectra for the 20 modeled versions of TOI 700 d.

- “Someday, when we have real spectra from TOI 700 d, we can backtrack, match them to the closest simulated spectrum, and then match that to a model,” Engelmann-Suissa said. “It’s exciting because no matter what we find out about the planet, it’s going to look completely different from what we have here on Earth.”

- TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA's Goddard Space Flight Center. Additional partners include Northrop Grumman, based in Falls Church, Virginia; NASA’s Ames Research Center in California’s Silicon Valley; the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts; MIT’s Lincoln Laboratory; and the Space Telescope Science Institute in Baltimore. More than a dozen universities, research institutes and observatories worldwide are participants in the mission.

- The Jet Propulsion Laboratory in Pasadena, California, manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate in Washington. Science operations are conducted at the Spitzer Science Center at Caltech in Pasadena. Space operations are based at Lockheed Martin Space in Littleton, Colorado. Data are archived at the Infrared Science Archive housed at IPAC at Caltech. Caltech manages JPL for NASA.

- The modeling work was funded through the Sellers Exoplanet Environments Collaboration at Goddard, a multidisciplinary collaboration that brings together experts to build comprehensive and sophisticated computer models to better analyze current and future exoplanet observations.

• December 4, 2019: Using data from the TESS satellite, astronomers at the University of Maryland (UMD), in College Park, Maryland, have captured a clear start-to-finish image sequence of an explosive emission of dust, ice and gases during the close approach of comet 46P/Wirtanen in late 2018. This is the most complete and detailed observation to date of the formation and dissipation of a naturally-occurring comet outburst. The team members reported their results in the November 22 issue of The Astrophysical Journal Letters. 48) 49) 50)

- “TESS spends nearly a month at a time imaging one portion of the sky. With no day or night breaks and no atmospheric interference, we have a very uniform, long-duration set of observations,” said Tony Farnham, a research scientist in the UMD Department of Astronomy and the lead author of the research paper. “As comets orbit the Sun, they can pass through TESS’ field of view. Wirtanen was a high priority for us because of its close approach in late 2018, so we decided to use its appearance in the TESS images as a test case to see what we could get out of it. We did so and were very surprised!”

Figure 46: This animation shows an explosive outburst of dust, ice and gases from comet 46P/Wirtanen that occurred on September 26, 2018 and dissipated over the next 20 days. The images, from NASA’s TESS spacecraft, were taken every three hours during the first three days of the outburst (image credit: Farnham et al./NASA)
Figure 46: This animation shows an explosive outburst of dust, ice and gases from comet 46P/Wirtanen that occurred on September 26, 2018 and dissipated over the next 20 days. The images, from NASA’s TESS spacecraft, were taken every three hours during the first three days of the outburst (image credit: Farnham et al./NASA)

- “While TESS is a powerhouse for discovering planets orbiting nearby, bright stars, its observing strategy enables so much exciting additional science,” said TESS project scientist Padi Boyd of NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Since the TESS data are rapidly made public through NASA’s Mikulski Archive for Space Telescopes (MAST), it’s exciting to see scientists identifying which data are of interest to them, and then doing all kinds of additional serendipitous science beyond exoplanets.”

- Normal comet activity is driven by sunlight vaporizing the ices near the surface of the nucleus, and the outflowing gases drag dust off the nucleus to form the coma. However, many comets are known to experience occasional spontaneous outbursts that can significantly, but temporarily increase the comet's activity. It is not currently known what causes outbursts, but they are related to the conditions on the comet's surface. A number of potential trigger mechanisms have been proposed, including a thermal event, in which a heat wave penetrates into a pocket of highly volatile ices, causing the ice to rapidly vaporize and produce an explosion of activity, and a mechanical event, where a cliff collapses, exposing fresh ice to direct sunlight. Thus, studies of the outburst behavior, especially in the early brightening stages that are difficult to capture, can help us understand the physical and thermal properties of the comet.

- Although Wirtanen came closest to Earth on December 16, 2018, the outburst occurred earlier in its approach, beginning on September 26, 2018. The initial brightening of the outburst occurred in two distinct phases, with an hour-long flash followed by a more gradual second stage that continued to grow brighter for another 8 hours. This second stage was likely caused by the gradual spreading of comet dust from the outburst, which causes the dust cloud to reflect more sunlight overall. After reaching peak brightness, the comet faded gradually over a period of more than two weeks. Because TESS takes detailed, composite images every 30 minutes, the team was able to view each phase in exquisite detail.

- “With 20 days’ worth of very frequent images, we were able to assess changes in brightness very easily. That’s what TESS was designed for, to perform its primary job as an exoplanet surveyor,” Farnham said. “We can’t predict when comet outbursts will happen. But even if we somehow had the opportunity to schedule these observations, we couldn’t have done any better in terms of timing. The outburst happened mere days after the observations started.”

- The team has generated a rough estimate of how much material may have been ejected in the outburst, about one million kilograms, which could have left a crater on the comet of around 20 meters (about 65 feet) across. Further analysis of the estimated particle sizes in the dust tail may help improve this estimate. Observing more comets will also help to determine whether multi-stage brightening is rare or commonplace in comet outbursts.

- TESS has also detected for the first time Wirtanen’s dust trail. Unlike a comet’s tail—the spray of gas and fine dust that follows behind a comet, growing as it approaches the sun—a comet’s trail is a field of larger debris that traces the comet’s orbital path as it travels around the sun. Unlike a tail, which changes direction as it is blown by the solar wind, the orientation of the trail stays more or less constant over time.

- “The trail more closely follows the orbit of the comet, while the tail is offset from it, as it gets pushed around by the sun’s radiation pressure. What’s significant about the trail is that it contains the largest material,” said Michael Kelley, an associate research scientist in the UMD Department of Astronomy and a co-author of the research paper. “Tail dust is very fine, a lot like smoke. But trail dust is much larger—more like sand and pebbles. We think comets lose most of their mass through their dust trails. When the Earth runs into a comet’s dust trail, we get meteor showers.”

- While the current study describes initial results, Farnham, Kelley and their colleagues look forward to further analyses of Wirtanen, as well as other comets in TESS’ field of view. “We also don’t know what causes natural outbursts and that’s ultimately what we want to find,” Farnham said. “There are at least four other comets in the same area of the sky where TESS made these observations, with a total of about 50 comets expected in the first two years’ worth of TESS data. There’s a lot that can come of these data.”

- TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA's Goddard Space Flight Center. Additional partners include Northrop Grumman, based in Falls Church, Virginia; NASA’s Ames Research Center in California’s Silicon Valley; the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts; MIT’s Lincoln Laboratory; and the Space Telescope Science Institute in Baltimore. More than a dozen universities, research institutes and observatories worldwide are participants in the mission.

• November 5, 2019: The glow of the Milky Way — our galaxy seen edgewise — arcs across a sea of stars in a new mosaic of the southern sky produced from a year of observations by NASA’s Transiting Exoplanet Survey Satellite (TESS). Constructed from 208 TESS images taken during the mission’s first year of science operations, completed on July 18, the southern panorama reveals both the beauty of the cosmic landscape and the reach of TESS’s cameras. 51)

- “Analysis of TESS data focuses on individual stars and planets one at a time, but I wanted to step back and highlight everything at once, really emphasizing the spectacular view TESS gives us of the entire sky,” said Ethan Kruse, a NASA Postdoctoral Program Fellow who assembled the mosaic at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

 
Figure 47: NASA’s Transiting Exoplanet Survey Satellite (TESS) spent a year imaging the southern sky in its search for worlds beyond our solar system. Dive into a mosaic of these images to see what TESS has found so far (video credit: NASA’s Godard Space Flight Center)

- Within this scene, TESS has discovered 29 exoplanets, or worlds beyond our solar system, and more than 1,000 candidate planets astronomers are now investigating.

- TESS divided the southern sky into 13 sectors and imaged each one of them for nearly a month using four cameras, which carry a total of 16 charge-coupled devices (CCDs). Remarkably, the TESS cameras capture a full sector of the sky every 30 minutes as part of its search for exoplanet transits. Transits occur when a planet passes in front of its host star from our perspective, briefly and regularly dimming its light. During the satellite’s first year of operations, each of its CCDs captured 15,347 30-minute science images. These images are just a part of more than 20 terabytes of southern sky data TESS has returned, comparable to streaming nearly 6,000 high-definition movies.

- In addition to its planet discoveries, TESS has imaged a comet in our solar system, followed the progress of numerous stellar explosions called supernovae, and even caught the flare from a star ripped apart by a supermassive black hole. After completing its southern survey, TESS turned north to begin a year-long study of the northern sky.

Figure 48: The plane of our Milky Way galaxy arcs across a starry landscape in this detail of the TESS southern sky mosaic [image credit: NASA/MIT/TESS and Ethan Kruse (USRA)]
Figure 48: The plane of our Milky Way galaxy arcs across a starry landscape in this detail of the TESS southern sky mosaic [image credit: NASA/MIT/TESS and Ethan Kruse (USRA)]

• October 30, 2019: Using asteroseismic data from NASA's TESS (Transiting Exoplanet Survey Satellite) mission, an international team, led by Instituto de Astrofisica e Ciencias do Espaco (IA) researcher Tiago Campante (Porto, Portugal), studied the red-giant stars HD 212771 and HD 203949. These are the first detections of oscillations in previously known exoplanet-host stars by TESS. The result was published today in an article in The Astrophysical Journal. 52) 53)

- Tiago Campante (IA and Faculdade de Ciencias da Universidade do Porto - FCUP) explains that detecting these oscillations was only possible because: "TESS observations are precise enough to allow measuring the gentle pulsations at the surfaces of stars. These two fairly evolved stars also host planets, providing the ideal testbed for studies of the evolution of planetary systems."

- Having determined the physical properties of both stars, such as their mass, size and age, through asteroseismology, the authors then focused their attention on the evolutionary state of HD 203949. Their aim was to understand how its planet could have avoided engulfment, since the envelope of the star would have expanded well beyond the current planetary orbit during the red-giant phase of evolution.

- Co-author Vardan Adibekyan (IA and Universidade do Porto) comments: "This study is a perfect demonstration of how stellar and exoplanetary astrophysics are linked together. Stellar analysis seems to suggest that the star is too evolved to still host a planet at such a 'short' orbital distance, while from the exoplanet analysis we know that the planet is there!"

- By performing extensive numerical simulations, the team thinks that star-planet tides might have brought the planet inward from its original, wider orbit, placing it where we see it today.

- Adibekyan adds: "The solution to this scientific dilemma is hidden in the 'simple fact' that stars and their planets not only form but also evolve together. In this particular case, the planet managed to avoid engulfment."

- In the past decade, asteroseismology has had a significant impact on the study of solar-type and red-giant stars, which exhibit convection-driven, solar-like oscillations. These studies have advanced considerably with space-based observatories like CoRoT (CNES/ESA) and Kepler (NASA), and are set to continue in the next decade with TESS and PLATO (ESA).

- Tiago Campante explains that: "IA's involvement in TESS is at the level of the scientific coordination within the TESS Asteroseismic Science Consortium (TASC). TASC is a large and unique scientific collaboration, bringing together all relevant research groups and individuals from around the world who are actively engaged in research in the field of asteroseismology. Following in the footsteps of its successful predecessor, the Kepler Asteroseismic Science Consortium (KASC), TASC is based on a collaborative and transparent working-group structure, aimed at facilitating open collaboration between scientists."

• September 26, 2019: For the first time, NASA’s planet-hunting TESS watched a black hole tear apart a star in a cataclysmic phenomenon called a tidal disruption event. Follow-up observations by NASA’s Neil Gehrels Swift Observatory and other facilities have produced the most detailed look yet at the early moments of one of these star-destroying occurrences. 54)

- “TESS data let us see exactly when this destructive event, named ASASSN-19bt, started to get brighter, which we’ve never been able to do before,” said Thomas Holoien, a Carnegie Fellow at the Carnegie Observatories in Pasadena, California. “Because we identified the tidal disruption quickly with the ground-based All-Sky Automated Survey for Supernovae (ASAS-SN), we were able to trigger multiwavelength follow-up observations in the first few days. The early data will be incredibly helpful for modeling the physics of these outbursts.”

Figure 49: This illustration shows a tidal disruption, which occurs when a passing star gets too close to a black hole and is torn apart into a stream of gas. Some of the gas eventually settles into a structure around the black hole called an accretion disk (image credit: NASA's Goddard Space Flight Center)
Figure 49: This illustration shows a tidal disruption, which occurs when a passing star gets too close to a black hole and is torn apart into a stream of gas. Some of the gas eventually settles into a structure around the black hole called an accretion disk (image credit: NASA's Goddard Space Flight Center)
 
Figure 50: When a star strays too close to a black hole, intense tides break it apart into a stream of gas. The tail of the stream escapes the system, while the rest of it swings back around, surrounding the black hole with a disk of debris. This video includes images of a tidal disruption event called ASASSN-19bt taken by NASA’s TESS and Swift missions, as well as an animation showing how the event unfolded (video credit: NASA's Goddard Space Flight Center)

- A paper describing the findings, led by Holoien, was published in the Sept. 27, 2019, issue of The Astrophysical Journal and is now available online. 55)

- ASAS-SN, a worldwide network of 20 robotic telescopes headquartered at Ohio State University (OSU) in Columbus, discovered the event on Jan. 29. Holoien was working at the Las Campanas Observatory in Chile when he received the alert from the project’s South Africa instrument. Holoien quickly trained two Las Campanas telescopes on ASASSN-19bt and then requested follow-up observations by Swift, ESA’s (European Space Agency’s) XMM-Newton and ground-based 1-meter telescopes in the global Las Cumbres Observatory network.

- TESS, however, didn’t need a call to action because it was already looking at the same area. The planet hunter monitors large swaths of the sky, called sectors, for 27 days at a time. This lengthy view allows TESS to observe transits, periodic dips in a star’s brightness that may indicate orbiting planets.

- ASAS-SN began spending more time looking at TESS sectors when the satellite started science operations in July 2018. Astronomers anticipated TESS could catch the earliest light from short-lived stellar outbursts, including supernovae and tidal disruptions. TESS first saw ASASSN-19bt on Jan. 21, over a week before the event was bright enough for ASAS-SN to detect it. However, the satellite only transmits data to Earth every two weeks, and once received they must be processed at NASA’s Ames Research Center in Silicon Valley, California. So the first TESS data on the tidal disruption were not available until March 13. This is why obtaining early follow-up observations of these events depends on coordination by ground-based surveys like ASAS-SN.

- Fortunately, the disruption also occurred in TESS’s southern continuous viewing zone, which was always in sight of one of the satellite’s four cameras. (TESS shifted to monitoring the northern sky at the end of July.) ASASSN-19bt’s location allowed Holoien and his colleagues to follow the event across several sectors. If it had occurred outside this zone, TESS might have missed the beginning of the outburst.

- “The early TESS data allow us to see light very close to the black hole, much closer than we’ve been able to see before,” said Patrick Vallely, a co-author and National Science Foundation Graduate Research Fellow at OSU. “They also show us that ASASSN-19bt’s rise in brightness was very smooth, which helps us tell that the event was a tidal disruption and not another type of outburst, like from the center of a galaxy or a supernova.”

- Holoien’s team used UV data from Swift — the earliest yet seen from a tidal disruption — to determine that the temperature dropped by about 50%, from around 71,500 to 35,500 degrees Fahrenheit (40,000 to 20,000 º Celsius), over a few days. It’s the first time such an early temperature decrease has been seen in a tidal disruption before, although a few theories have predicted it, Holoien said.

- More typical for these kinds of events was the low level of X-ray emission seen by both Swift and XMM-Newton. Scientists don’t fully understand why tidal disruptions produce so much UV emission and so few X-rays.

- “People have suggested multiple theories — perhaps the light bounces through the newly created debris and loses energy, or maybe the disk forms further from the black hole than we originally thought and the light isn’t so affected by the object’s extreme gravity,” said S. Bradley Cenko, Swift’s principal investigator at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “More early-time observations of these events may help us answer some of these lingering questions.”

- Astronomers think the supermassive black hole that generated ASASSN-19bt weighs around 6 million times the Sun’s mass. It sits at the center of a galaxy called 2MASX J07001137-6602251 located around 375 million light-years away in the constellation Volans. The destroyed star may have been similar in size to our Sun.

- Tidal disruptions are incredibly rare, occurring once every 10,000 to 100,000 years in a galaxy the size of our own Milky Way. Supernovae, by comparison, happen every 100 years or so. In total, astronomers have observed only about 40 tidal disruptions so far, and scientists predicted TESS would see only one or two in its initial two-year mission.

- “For TESS to observe ASASSN-19bt so early in its tenure, and in the continuous viewing zone where we could watch it for so long, is really quite extraordinary,” said Padi Boyd, the TESS project scientist at Goddard. “Future collaborations with observatories around the world and in orbit will help us learn even more about the different outbursts that light up the cosmos.”

- TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA's Goddard Space Flight Center. Additional partners include Northrop Grumman, based in Falls Church, Virginia; NASA’s Ames Research Center in California’s Silicon Valley; the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts; MIT’s Lincoln Laboratory; and the Space Telescope Science Institute in Baltimore. More than a dozen universities, research institutes and observatories worldwide are participants in the mission.

- NASA's Goddard Space Flight Center manages the Swift mission in collaboration with Penn State in University Park, the Los Alamos National Laboratory in New Mexico and Northrop Grumman Innovation Systems in Dulles, Virginia. Other partners include the University of Leicester and Mullard Space Science Laboratory of the University College London in the United Kingdom, Brera Observatory and ASI.

• July 29, 2019: NASA’s newest planet hunter, the Transiting Exoplanet Survey Satellite (TESS), has discovered three new worlds — one slightly larger than Earth and two of a type not found in our solar system — orbiting a nearby star. The planets straddle an observed gap in the sizes of known planets and promise to be among the most curious targets for future studies. 56)

- TESS Object of Interest (TOI) 270 is a faint, cool star more commonly identified by its catalog name: UCAC4 191-004642. The M-type dwarf star is about 40% smaller than the Sun in both size and mass, and it has a surface temperature about one-third cooler than the Sun’s. The planetary system lies about 73 light-years away in the southern constellation of Pictor.

Figure 51: This infographic illustrates key features of the TOI 270 system, located about 73 light-years away in the southern constellation Pictor. The three known planets were discovered by NASA’s Transiting Exoplanet Survey Satellite through periodic dips in starlight caused by each orbiting world. Insets show information about the planets, including their relative sizes, and how they compare to Earth. Temperatures given for TOI 270’s planets are equilibrium temperatures, calculated without the warming effects of any possible atmospheres (image credit: NASA’s Goddard Space Flight Center/Scott Wiessinger)
Figure 51: This infographic illustrates key features of the TOI 270 system, located about 73 light-years away in the southern constellation Pictor. The three known planets were discovered by NASA’s Transiting Exoplanet Survey Satellite through periodic dips in starlight caused by each orbiting world. Insets show information about the planets, including their relative sizes, and how they compare to Earth. Temperatures given for TOI 270’s planets are equilibrium temperatures, calculated without the warming effects of any possible atmospheres (image credit: NASA’s Goddard Space Flight Center/Scott Wiessinger)

- “This system is exactly what TESS was designed to find — small, temperate planets that pass, or transit, in front of an inactive host star, one lacking excessive stellar activity, such as flares,” said lead researcher Maximilian Günther, a Torres Postdoctoral Fellow at the Massachusetts Institute of Technology’s (MIT) Kavli Institute for Astrophysics and Space Research in Cambridge. “This star is quiet and very close to us, and therefore much brighter than the host stars of comparable systems. With extended follow-up observations, we’ll soon be able to determine the make-up of these worlds, establish if atmospheres are present and what gases they contain, and more.”

- A paper describing the system was published in the journal Nature Astronomy and is now available online. 57)

- The innermost planet, TOI 270 b, is likely a rocky world about 25% larger than Earth. It orbits the star every 3.4 days at a distance about 13 times closer than Mercury orbits the Sun. Based on statistical studies of known exoplanets of similar size, the science team estimates TOI 270 b has a mass around 1.9 times greater than Earth’s.

- Due to its proximity to the star, planet b is an oven-hot world. Its equilibrium temperature — that is, the temperature based only on energy it receives from the star, which ignores additional warming effects from a possible atmosphere — is around 490 º Fahrenheit (254ºC).

- The other two planets, TOI 270 c and d, are, respectively, 2.4 and 2.1 times larger than Earth and orbit the star every 5.7 and 11.4 days. Although only about half its size, both may be similar to Neptune in our solar system, with compositions dominated by gases rather than rock, and they likely weigh around 7 and 5 times Earth’s mass, respectively.

Figure 52: Compare and contrast worlds in the TOI 270 system with these illustrations of each planet. Temperatures given for TOI 270 planets are equilibrium temperatures, calculated without taking into account the warming effects of any possible atmospheres (image credit: NASA’s Goddard Space Flight Center)
Figure 52: Compare and contrast worlds in the TOI 270 system with these illustrations of each planet. Temperatures given for TOI 270 planets are equilibrium temperatures, calculated without taking into account the warming effects of any possible atmospheres (image credit: NASA’s Goddard Space Flight Center)

- All of the planets are expected to be tidally locked to the star, which means they only rotate once every orbit and keep the same side facing the star at all times, just as the Moon does in its orbit around Earth.

- Planet c and d might best be described as mini-Neptunes, a type of planet not seen in our own solar system. The researchers hope further exploration of TOI 270 may help explain how two of these mini-Neptunes formed alongside a nearly Earth-size world.

- “An interesting aspect of this system is that its planets straddle a well-established gap in known planetary sizes,” said co-author Fran Pozuelos, a postdoctoral researcher at the University of Liège in Belgium. “It is uncommon for planets to have sizes between 1.5 and two times that of Earth for reasons likely related to the way planets form, but this is still a highly controversial topic. TOI 270 is an excellent laboratory for studying the margins of this gap and will help us better understand how planetary systems form and evolve.”

- Günther’s team is particularly interested in the outermost planet, TOI 270 d. The team estimates the planet’s equilibrium temperature to be about 150º Fahrenheit (66º C). This makes it the most temperate world in the system — and as such, a rarity among known transiting planets.

- "TOI 270 is perfectly situated in the sky for studying the atmospheres of its outer planets with NASA's future James Webb Space Telescope," said co-author Adina Feinstein, a doctoral student at the University of Chicago. "It will be observable by Webb for over half a year, which could allow for really interesting comparison studies between the atmospheres of TOI 270 c and d."

Figure 53: The TOI 270 system is so compact that the orbits of Jupiter and its moons in our own solar system offer the closest reasonable comparison, as illustrated here (image credit: NASA/GSFC (Goddard Space Flight Center))
Figure 53: The TOI 270 system is so compact that the orbits of Jupiter and its moons in our own solar system offer the closest reasonable comparison, as illustrated here (image credit: NASA/GSFC (Goddard Space Flight Center))

- The team hopes further research may reveal additional planets beyond the three now known. If planet d has a rocky core covered by a thick atmosphere, its surface would be too warm for the presence of liquid water, considered a key requirement for a potentially habitable world. But follow-up studies may discover additional rocky planets at slightly greater distances from the star, where cooler temperatures could allow liquid water to pool on their surfaces.

- TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA's Goddard Space Flight Center. Additional partners include Northrop Grumman, based in Falls Church, Virginia; NASA’s Ames Research Center in California’s Silicon Valley; the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts; MIT’s Lincoln Laboratory; and the Space Telescope Science Institute in Baltimore. More than a dozen universities, research institutes and observatories worldwide are participants in the mission.

• July 25, 2019: NASA’s TESS (Transiting Exoplanet Survey Satellite) has discovered 21 planets outside our solar system and captured data on other interesting events occurring in the southern sky during its first year of science. TESS has now turned its attention to the Northern Hemisphere to complete the most comprehensive planet-hunting expedition ever undertaken. 58)

- TESS began hunting for exoplanets (or worlds orbiting distant stars) in the southern sky in July of 2018, while also collecting data on supernovae, black holes and other phenomena in its line of sight. Along with the planets TESS has discovered, the mission has identified over 850 candidate exoplanets that are waiting for confirmation by ground-based telescopes.

- “The pace and productivity of TESS in its first year of operations has far exceeded our most optimistic hopes for the mission,” said George Ricker, TESS’s principal investigator at the Massachusetts Institute of Technology in Cambridge. “In addition to finding a diverse set of exoplanets, TESS has discovered a treasure trove of astrophysical phenomena, including thousands of violently variable stellar objects.”

- To search for exoplanets, TESS uses four large cameras to watch a 24-by-96-degree section of the sky for 27 days at a time. Some of these sections overlap, so some parts of the sky are observed for almost a year. TESS is concentrating on stars closer than 300 light-years from our solar system, watching for transits, which are periodic dips in brightness caused by an object, like a planet, passing in front of the star.

 
Figure 54: Here are highlights from TESS's first year of science operations. All exoplanet animations are illustrations. To search for exoplanets, TESS uses four large cameras to watch a 24 x 96 degree section of the sky for 27 days at a time. Some of these sections overlap, so some parts of the sky are observed for almost a year. TESS is concentrating on stars closer than 300 light-years from our solar system, watching for transits, which are periodic dips in brightness caused by an object, like a planet, passing in front of the star (video credit: NASA/GSFC, Published on 25 July 2019)

- On July 18, the southern portion of the survey was completed and the spacecraft turned its cameras to the north. When it completes the northern section in 2020, TESS will have mapped over three quarters of the sky.

- “Kepler discovered the amazing result that, on average, every star system has a planet or planets around it,” said Padi Boyd, TESS project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “TESS takes the next step. If planets are everywhere, let’s find those orbiting bright, nearby stars because they’ll be the ones we can now follow up with existing ground and space-based telescopes, and the next generation of instruments for decades to come.”

- Here are a few of the interesting objects and events TESS saw during its first year.

Exoplanets

- To qualify as an exoplanet candidate, an object must make at least three transits in the TESS data, and then pass through several additional checks to make sure the transits were not a false positive caused by an eclipse or companion star, but may in fact be an exoplanet. Once a candidate is identified, astronomers deploy a large network of ground-based telescopes to confirm it.

- “The team is currently focused on finding the best candidates to confirm by ground-based follow-up,” said Natalia Guerrero, who manages the team in charge of identifying exoplanet candidates at MIT. “But there are many more potential exoplanet candidates in the data yet to be analyzed, so we’re really just seeing the tip of the iceberg here. TESS has only scratched the surface.”

- The planets TESS has discovered so far range from a world 80% the size of Earth to ones comparable to or exceeding the sizes of Jupiter and Saturn. Like Kepler, TESS is finding many planets smaller in size than Neptune, but larger than Earth.

- While NASA is striving to put astronauts on some of our nearest neighbors — the Moon and Mars — in order to understand more about the planets in our own solar system, follow-up observations with powerful telescopes of the planets TESS discovers will enable us to better understand how Earth and the solar system formed.

- With TESS’s data, scientists using current and future observatories, like the James Webb Space Telescope, will be able to study other aspects of exoplanets, like the presence and composition of any atmosphere, which would impact the possibility of developing life.

Comets

- Before science operations started, TESS snapped clear images of a newly discovered comet in our solar system. During on-orbit instrument testing, the satellite’s cameras took a series of images that captured the motion of C/2018 N1, a comet found on June 29 by NASA’s Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE).

- TESS captured data on similar objects outside the solar system as well.

Exocomets

- Data from the mission were also used to identify transits by comets orbiting another star: Beta Pictoris, located 63 light-years away. Astronomers were able to find three comets that were too small to be planets and had detectable tails, the first identification of its type in visible light.

Supernovae

- Because TESS spends nearly a month looking in the same location, it can capture data on stellar events, like supernovae, as they begin. During its first months of science operations, TESS spotted six supernovae occurring in distant galaxies that were later discovered by ground-based telescopes.

- Scientists hope to use these types of observations to better understand the origins of a specific kind of explosion known as a Type Ia supernova.

- Type Ia supernovae occur either in star systems where one white dwarf draws gas from another star or when two white dwarfs merge. Astronomers don’t know which case is more common, but with data from TESS, they’ll have a clearer understanding of the origins of these cosmic blasts.

- Type Ia supernovae are a class of objects called a “standard candle,” meaning astronomers know how luminous they are and can use them to calculate quantities like how quickly the universe is expanding. TESS data will help them understand differences between Type Ia supernovae created in both circumstances, which could have a large impact on how we understand events happening billions of light-years away and, ultimately, the fate of the universe.

• June 27, 2019: NASA’s Transiting Exoplanet Survey Satellite (TESS) has discovered a world between the sizes of Mars and Earth orbiting a bright, cool, nearby star. The planet, called L 98-59b, marks the tiniest planet discovered by TESS to date. 59)

- Two other worlds orbit the same star. While all three planets’ sizes are known, further study with other telescopes will be needed to determine if they have atmospheres and, if so, which gases are present. The L 98-59 worlds nearly double the number of small exoplanets — that is, planets beyond our solar system — that have the best potential for this kind of follow-up.

Figure 55: The three planets discovered in the L98-59 system by NASA’s TESS mission are compared to Mars and Earth in order of increasing size in this illustration (image credit: NASA/GSFC)
Figure 55: The three planets discovered in the L98-59 system by NASA’s TESS mission are compared to Mars and Earth in order of increasing size in this illustration (image credit: NASA/GSFC)

- “The discovery is a great engineering and scientific accomplishment for TESS,” said Veselin Kostov, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the SETI Institute in Mountain View, California. “For atmospheric studies of small planets, you need short orbits around bright stars, but such planets are difficult to detect. This system has the potential for fascinating future studies.” 60)

- L 98-59b is around 80% Earth’s size and about 10% smaller than the previous record holder discovered by TESS. Its host star, L 98-59, is an M dwarf about one-third the mass of the Sun and lies about 35 light-years away in the southern constellation Volans. While L 98-59b is a record for TESS, even smaller planets have been discovered in data collected by NASA’s Kepler satellite, including Kepler-37b, which is only 20% larger than the Moon.

- The two other worlds in the system, L 98-59c and L 98-59d, are respectively around 1.4 and 1.6 times Earth’s size. All three were discovered by TESS using transits, periodic dips in the star’s brightness caused when each planet passes in front of it.

- TESS monitors one 24-by-96-degree region of the sky, called a sector, for 27 days at a time. When the satellite finishes its first year of observations in July, the L 98-59 system will have appeared in seven of the 13 sectors that make up the southern sky. Kostov’s team hopes this will allow scientists to refine what’s known about the three confirmed planets and search for additional worlds.

- “If you have more than one planet orbiting in a system, they can gravitationally interact with each other,” said Jonathan Brande, a co-author and astrophysicist at Goddard and the University of Maryland, College Park. “TESS will observe L 98-59 in enough sectors that it may be able to detect planets with orbits around 100 days. But if we get really lucky, we might see the gravitational effects of undiscovered planets on the ones we currently know.”

- M dwarfs like L 98-59 account for three-quarters of our Milky Way galaxy’s stellar population. But they are no larger than about half the Sun’s mass and are much cooler, with surface temperatures less than 70% of the Sun’s. Other examples include TRAPPIST-1, which hosts a system of seven Earth-size planets, and Proxima Centauri, our nearest stellar neighbor, which has one confirmed planet. Because these small, cool stars are so common, scientists want to learn more about the planetary systems that form around them.

- L 98-59b, the innermost world, orbits every 2.25 days, staying so close to the star it receives as much as 22 times the amount of energy Earth receives from the Sun. The middle planet, L 98-59c, orbits every 3.7 days and experiences about 11 times as much radiation as Earth. L 98-59d, the farthest planet identified in the system so far, orbits every 7.5 days and is blasted with around four times the radiant energy as Earth.

- None of the planets lie within the star’s “habitable zone,” the range of distances from the star where liquid water could exist on their surfaces. However, all of them occupy what scientists call the Venus zone, a range of stellar distances where a planet with an initial Earth-like atmosphere could experience a runaway greenhouse effect that transforms it into a Venus-like atmosphere. Based on its size, the third planet could be either a Venus-like rocky world or one more like Neptune, with a small, rocky core cocooned beneath a deep atmosphere.

- One of TESS’s goals is to build a catalog of small, rocky planets on short orbits around very bright, nearby stars for atmospheric study by NASA's upcoming James Webb Space Telescope. Four of the TRAPPIST-1 worlds are prime candidates, and Kostov’s team suggests the L 98-59 planets are as well.

- The TESS mission feeds our desire to understand where we came from and whether we’re alone in the universe.

- "If we viewed the Sun from L 98-59, transits by Earth and Venus would lead us to think the planets are almost identical, but we know they’re not,” said Joshua Schlieder, a co-author and an astrophysicist at Goddard. “We still have many questions about why Earth became habitable and Venus did not. If we can find and study similar examples around other stars, like L 98-59, we can potentially unlock some of those secrets.”

• April 15, 2019: NASA’s TESS (Transiting Exoplanet Survey Satellite) has discovered its first Earth-size world. The planet, HD 21749c, is about 89% Earth’s diameter. It orbits HD 21749, a K-type star with about 70% of the Sun’s mass located 53 light-years away in the southern constellation Reticulum, and is the second planet TESS has identified in the system. The new world is likely rocky and circles very close to its star, completing one orbit in just under eight days. The planet is likely very hot, with surface temperatures perhaps as high as 800º F (427 ºC). 61)

- This is the 10th confirmed planet discovered by TESS, and hundreds of additional candidates are now being studied.

- Scientists at MIT (Massachusetts Institute of Technology) and the Carnegie Institution for Science analyzed TESS transit data from the first four sectors of TESS observations to detect 11 periodic dips in the star’s brightness. From this, they determined that the star’s light was being partially blocked by a planet about the size of Earth.

- The star that HD 21749c orbits is bright and relatively nearby, and therefore well suited to more detailed follow-up studies, which could provide critical information about the planet’s properties, including potentially the first mass measurement of an Earth-size planet found by TESS. 62)

• March 26, 2019: NASA's new TESS (Transiting Exoplanet Survey Satellite) is designed to ferret out habitable exoplanets, but with hundreds of thousands of sunlike and smaller stars in its camera views, which of those stars could host planets like our own? A team of astronomers has identified the most promising targets for this search. 63) 64)

- TESS will observe 400,000 stars across the whole sky to catch a glimpse of a planet transiting across the face of its star, one of the primary methods by which exoplanets are identified.

- A team of astronomers from Cornell University, Lehigh University and Vanderbilt University has identified the most promising targets for this search in the new "TESS Habitable Zone Star Catalog," published in Astrophysical Journal Letters. Lead author is Lisa Kaltenegger, professor of astronomy at Cornell, director of Cornell's Carl Sagan Institute and a member of the TESS science team. 65)

- The catalog identifies 1,822 stars for which TESS is sensitive enough to spot Earth-like planets just a bit larger than Earth that receive radiation from their star equivalent to what Earth receives from our sun. For 408 stars, TESS can glimpse a planet just as small as Earth, with similar irradiation, in one transit alone.

- "Life could exist on all sorts of worlds, but the kind we know can support life is our own, so it makes sense to first look for Earth-like planets," Kaltenegger said. "This catalog is important for TESS because anyone working with the data wants to know around which stars we can find the closest Earth-analogs."

- Kaltenegger leads a program on TESS that is observing the catalog's 1,822 stars in detail, looking for planets. "I have 408 new favorite stars," said Kaltenegger. "It is amazing that I don't have to pick just one; I now get to search hundreds of stars."

- Confirming an exoplanet has been observed and figuring out the distance between it and its star requires detecting two transits across the star. The 1,822 stars the researchers have identified in the catalog are ones from which TESS could detect two planetary transits during its mission. Those orbital periods place them squarely in the habitable zone of their star.

- The habitable zone is the area around a star at which water can be liquid on a rocky planet's surface, therefore considered ideal for sustaining life. As the researchers note, planets outside the habitable zone could certainly harbor life, but it would be extremely difficult to detect any signs of life on such frozen planets without flying there.

- The catalog also identifies a subset of 227 stars for which TESS can not only probe for planets that receive the same irradiation as Earth, but for which TESS can also probe out farther, covering the full extent of the habitable zone all the way to cooler Mars-like orbits. This will allow astronomers to probe the diversity of potentially habitable worlds around hundreds of cool stars during the TESS mission's lifetime.

- The stars selected for the catalog are bright, cool dwarfs, with temperatures roughly between 2,700 and 5,000 degrees Kelvin. The stars in the catalog are selected due to their brightness; the closest are only approximately 6 light-years from Earth.

- "We don't know how many planets TESS will find around the hundreds of stars in our catalog or whether they will be habitable," Kaltenegger said, "but the odds are in our favor. Some studies indicate that there are many rocky planets in the habitable zone of cool stars, like the ones in our catalog. We're excited to see what worlds we'll find."

- A total of 137 stars in the catalog are within the continuous viewing zone of NASA's James Webb Space Telescope, now under construction. Webb will be able to observe them to characterize planetary atmospheres and search for signs of life in their atmospheres.

- Planets TESS identifies may also make excellent targets for observations by ground-based extremely large telescopes currently being built, the researchers note, as the brightness of their host stars would make them easier to characterize.

- "This is a remarkable time in human history and a huge leap for our understanding of our place in the universe," said Stassun, a member of the TESS science team.

• January 7, 2019: NASA's TESS mission has discovered a third small planet outside our solar system, scientists announced this week at the annual AAS (American Astronomical Society) meeting in Seattle, WA. 66) 67) 68)

Figure 56: NASA’s TESS mission, which will survey the entire sky over the next two years, has already discovered three new exoplanets around nearby stars (image credit: NASA/GSFC, edited by MIT News)
Figure 56: NASA’s TESS mission, which will survey the entire sky over the next two years, has already discovered three new exoplanets around nearby stars (image credit: NASA/GSFC, edited by MIT News)

- The new planet, named HD 21749b, orbits a bright, nearby dwarf star about 53 light years away, in the constellation Reticulum, and appears to have the longest orbital period of the three planets so far identified by TESS. HD 21749b journeys around its star in a relatively leisurely 36 days, compared to the two other planets — Pi Mensae b, a “super-Earth” with a 6.3-day orbit, and LHS 3844b, a rocky world that speeds around its star in just 11 hours. All three planets were discovered in the first three months of TESS observations.

- The surface of the new planet is likely around 300 degrees Fahrenheit (150ºC) — relatively cool, given its proximity to its star, which is almost as bright as the sun.

- “It’s the coolest small planet that we know of around a star this bright,” says Diana Dragomir, a postdoc in MIT’s Kavli Institute for Astrophysics and Space Research, who led the new discovery. “We know a lot about atmospheres of hot planets, but because it’s very hard to find small planets that orbit farther from their stars, and are therefore cooler, we haven’t been able to learn much about these smaller, cooler planets. But here we were lucky, and caught this one, and can now study it in more detail.”

- The planet is about three times the size of Earth, which puts it in the category of a “sub-Neptune.” Surprisingly, it is also a whopping 23 times as massive as the Earth. But it is unlikely that the planet is rocky and therefore habitable; it’s more likely made of gas, of a kind that is much more dense than the atmospheres of either Neptune or Uranus.

- “We think this planet wouldn’t be as gaseous as Neptune or Uranus, which are mostly hydrogen and really puffy,” Dragomir says. “The planet likely has a density of water, or a thick atmosphere.”

- Serendipitously, the researchers have also detected evidence of a second planet, though not yet confirmed, in the same planetary system, with a shorter, 7.8-day orbit. If it is confirmed as a planet, it could be the first Earth-sized planet discovered by TESS.

Figure 57: NASA’s Transiting Exoplanet Survey Satellite (TESS) has found three confirmed exoplanets in the data from the space telescope’s four cameras (image credit: NASA/MIT/TESS, Ref. 68)
Figure 57: NASA’s Transiting Exoplanet Survey Satellite (TESS) has found three confirmed exoplanets in the data from the space telescope’s four cameras (image credit: NASA/MIT/TESS, Ref. 68)
 
Figure 58: TESS first planet locations (video credit: NASA, MIT)

"Something There"

- Since TESS launched in April 2018, the spacecraft has been monitoring the sky, sector by sector, for momentary dips in the light of about 200,000 nearby stars. Such dips likely represent a planet passing in front of that star.

- The satellite trains its four onboard cameras on each sector for 27 days, taking in light from the stars in that particular segment before shifting to view the next one. Over its two-year mission, TESS will survey nearly the entire sky by monitoring and piecing together overlapping slices of the night sky. The satellite will spend the first year surveying the sky in the Southern Hemisphere, before swiveling around to take in the Northern Hemisphere sky.

- The mission has released to the public all the data TESS has collected so far from the first three of the 13 sectors that it will monitor in the southern sky. For their new analysis, the researchers looked through this data, collected between July 25 and Oct. 14.

- Within the sector 1 data, Dragomir identified a single transit, or dip, in the light from the star HD 21749. As the satellite only collects data from a sector for 27 days, it’s difficult to identify planets with orbits longer than that time period; by the time a planet passes around again, the satellite may have shifted to view another slice of the sky.

- To complicate matters, the star itself is relatively active, and Dragomir wasn’t sure if the single transit she spotted was a result of a passing planet or a blip in stellar activity. So she consulted a second dataset, collected by the HARPS (High Accuracy Radial velocity Planet Searcher), a high-precision spectrograph installed on a large ground-based telescope in Chile, which identifies exoplanets by their gravitational tug on their host stars.

- “They had looked at this star system a decade ago and never announced anything because they weren’t sure if they were looking at a planet versus the activity of the star,” Dragomir says. “But we had this one transit, and knew something was there.”

Stellar Detectives

- When the researchers looked through the HARPS data, they discovered a repeating signal emanating from HD 21749 every 36 days. From this, they estimated that, if they indeed had seen a transit in the TESS data from sector 1, then another transit should appear 36 days later, in data from sector 3. When that data became publicly available, a momentary glitch created a gap in the data just at the time when Dragomir expected the second transit to occur.

- “Because there was an interruption in data around that time, we initially didn’t see a second transit, and were pretty disappointed,” Dragomir recalls. “But we re-extracted the data and zoomed in to look more carefully, and found what looked like the end of a transit.”

- She and her colleagues compared the pattern to the first full transit they had originally discovered, and found a near perfect match — an indication that the planet passed again in front of its star, in a 36-day orbit.

- “There was quite some detective work involved, and the right people were there at the right time,” Dragomir says. “But we were lucky and we caught the signals, and they were really clear.”

- They also used data from the Planet Finder Spectrograph, an instrument installed on the Magellan Telescope in Chile, to further validate their findings and constrain the planet’s mass and orbit.

- Once TESS has completed its two-year monitoring of the entire sky, the science team has committed to delivering information on 50 small planets less than four times the size of Earth to the astronomy community for further follow-up, either with ground-based telescopes or the future James Webb Space Telescope.

- “We’ve confirmed three planets so far, and there are so many more that are just waiting for telescope and people time to be confirmed,” Dragomir says. “So it’s going really well, and TESS is already helping us to learn about the diversity of these small planets.”

- TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by Goddard. Additional partners include Northrop Grumman, based in Falls Church, Virginia; NASA’s Ames Research Center in California’s Silicon Valley; the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts; MIT Lincoln Laboratory; and the Space Telescope Science Institute in Baltimore. More than a dozen universities, research institutes, and observatories worldwide are participants in the mission.

• On 17 September 2018, TESS (Transiting Exoplanet Survey Satellite) shared its first science observations. Part of the data from TESS’s initial science orbit includes a detailed picture of the southern sky taken with all four of the planet-hunter’s wide-field cameras. The image captures a wealth of stars and other objects, including systems previously known to have exoplanets, planets beyond our solar system. TESS will spend the next two years monitoring the nearest, brightest stars for periodic dips in their brightness, known as transits. Such transits suggest a planet may be passing in front of its parent star. TESS is expected to find thousands of new planets using this method. 69) 70)

- TESS’s cameras, designed and built by MIT’s Lincoln Laboratory in Lexington, Massachusetts, and the MIT Kavli Institute, monitor large swaths of the sky to look for transits. Transits occur when a planet passes in front of its star as viewed from the satellite’s perspective, causing a regular dip in the star’s brightness.

- TESS will spend two years monitoring 26 such sectors for 27 days each, covering 85 percent of the sky. During its first year of operations, the satellite will study the 13 sectors making up the southern sky. Then TESS will turn to the 13 sectors of the northern sky to carry out a second year-long survey.

Figure 59: TESS took this snapshot of the Large Magellanic Cloud (right) and the bright star R Doradus (left) with just a single detector of one of its cameras on 7 Aug. 2018. The frame is part of a swath of the southern sky TESS captured in its “first light” science image as part of its initial round of data collection (image credit: NASA/MIT/TESS)
Figure 59: TESS took this snapshot of the Large Magellanic Cloud (right) and the bright star R Doradus (left) with just a single detector of one of its cameras on 7 Aug. 2018. The frame is part of a swath of the southern sky TESS captured in its “first light” science image as part of its initial round of data collection (image credit: NASA/MIT/TESS)
Figure 60: TESS captured this strip of stars and galaxies in the southern sky during one 30-minute period on 7 Aug. 2018. Created by combining the view from all four of its cameras, this is TESS’s “first light,” from the first observing sector that will be used for identifying planets around other stars. Notable features in this swath of the southern sky include the Large and Small Magellanic Clouds and a globular cluster called NGC 104, also known as 47 Tucanae. The brightest stars in the image, Beta Gruis and R Doradus, saturated an entire column of camera detector pixels on the satellite’s second and fourth cameras (image credit: NASA/MIT/TESS)
Figure 60: TESS captured this strip of stars and galaxies in the southern sky during one 30-minute period on 7 Aug. 2018. Created by combining the view from all four of its cameras, this is TESS’s “first light,” from the first observing sector that will be used for identifying planets around other stars. Notable features in this swath of the southern sky include the Large and Small Magellanic Clouds and a globular cluster called NGC 104, also known as 47 Tucanae. The brightest stars in the image, Beta Gruis and R Doradus, saturated an entire column of camera detector pixels on the satellite’s second and fourth cameras (image credit: NASA/MIT/TESS)
 
Figure 61: How NASA’s newest planet hunter scans the sky. This animation shows how TESS will study 85 percent of the sky in 26 sectors. The spacecraft will observe the 13 sectors that make up the southern sky in the first year and the 13 sectors of the northern sky in the second year (video credit: NASA/GSFC)

• December 6, 2018: The first batch of TESS mission data is now available through MAST. This release includes all data from Sectors 1 and 2, observed between July 25 and September 20, 2018. This includes both FFI (Full Frame Images) and 2-min cadence data. 71)

Figure 62: Map of observations (image credit: STScI)
Figure 62: Map of observations (image credit: STScI)

• August 6, 2018: Before NASA’s TESS started science operations on July 25, 2018, the planet hunter sent back a stunning sequence of serendipitous images showing the motion of a comet. Taken over the course of 17 hours on July 25, these TESS images helped demonstrate the satellite’s ability to collect a prolonged set of stable periodic images covering a broad region of the sky — all critical factors in finding transiting planets orbiting nearby stars. 72)

- Over the course of these tests, TESS took images of C/2018 N1, a comet discovered by NASA’s NEOWISE (Near-Earth Object Wide-field Infrared Survey Explorer) satellite on June 29. The comet, located about 29 million miles (48 million km) from Earth in the southern constellation Piscis Austrinus, is seen to move across the frame from right to left as it orbits the Sun. The comet’s tail, which consists of gases carried away from the comet by an outflow from the Sun called the solar wind, extends to the top of the frame and gradually pivots as the comet glides across the field of view.

Figure 63: The animated gif sequence is compiled from a series of images taken on July 25 by TESS. The angular extent of the widest field of view is six degrees. Visible in the images are the comet C/2018 N1, asteroids, variable stars, asteroids and reflected light from Mars. TESS is expected to find thousands of planets around other nearby stars (image credit: MIT, NASA/GSFC)
Figure 63: The animated gif sequence is compiled from a series of images taken on July 25 by TESS. The angular extent of the widest field of view is six degrees. Visible in the images are the comet C/2018 N1, asteroids, variable stars, asteroids and reflected light from Mars. TESS is expected to find thousands of planets around other nearby stars (image credit: MIT, NASA/GSFC)

- In addition to the comet, the images reveal a treasure trove of other astronomical activity. The stars appear to shift between white and black as a result of image processing. The shift also highlights variable stars — which change brightness either as a result of pulsation, rapid rotation, or by eclipsing binary neighbors. Asteroids in our solar system appear as small white dots moving across the field of view. Towards the end of the video, one can see a faint broad arc of light moving across the middle section of the frame from left to right. This is stray light from Mars, which is located outside the frame. The images were taken when Mars was at its brightest near opposition, or its closest distance, to Earth.

- These images were taken during a short period near the end of the mission’s commissioning phase, prior to the start of science operations. The movie presents just a small fraction of TESS’s active field of view. The team continues to fine-tune the spacecraft’s performance as it searches for distant worlds.

• July 27, 2018: NASA’s TESS (Transiting Exoplanet Survey Satellite) has started its search for planets around nearby stars, officially beginning science operations on July 25, 2018. TESS is expected to transmit its first series of science data back to Earth in August, and thereafter periodically every 13.5 days, once per orbit, as the spacecraft makes it closest approach to Earth. The TESS Science Team will begin searching the data for new planets immediately after the first series arrives. 73)

- “I’m thrilled that our new planet hunter mission is ready to start scouring our solar system’s neighborhood for new worlds,” said Paul Hertz, NASA Astrophysics division director at Headquarters, Washington. “Now that we know there are more planets than stars in our universe, I look forward to the strange, fantastic worlds we’re bound to discover.”

- TESS is NASA’s latest satellite to search for planets outside our solar system, known as exoplanets. The mission will spend the next two years monitoring the nearest and brightest stars for periodic dips in their light. These events, called transits, suggest that a planet may be passing in front of its star. TESS is expected to find thousands of planets using this method, some of which could potentially support life.

• July 11, 2018: After a successful launch on April 18, 2018, NASA’s newest planet hunter, the Transiting Exoplanet Survey Satellite, is currently undergoing a series of commissioning tests before it begins searching for planets. The TESS team has reported that the spacecraft and cameras are in good health, and the spacecraft has successfully reached its final science orbit. The team continues to conduct tests in order to optimize spacecraft performance with a goal of beginning science at the end of July. 74)

- Every new mission goes through a commissioning period of testing and adjustments before beginning science operations. This serves to test how the spacecraft and its instruments are performing and determines whether any changes need to be made before the mission starts observations.

• May 21, 2018: TESS successfully completed a lunar flyby on 17 May at 06:34:35 UTC (2:34 AM EST). At its closest approach, TESS was 8,253 km from the lunar surface. Based on the successful lunar fly-by, no adjustment burn was required. 75)

Figure 64: An artist’s illustration of TESS as it passed the Moon during its lunar flyby. This provided a gravitational boost that placed TESS on course for its final working orbit (image credit: NASA's Goddard Space Flight Center)
Figure 64: An artist’s illustration of TESS as it passed the Moon during its lunar flyby. This provided a gravitational boost that placed TESS on course for its final working orbit (image credit: NASA's Goddard Space Flight Center)

- As part of commissioning, the TESS science team took a 2-second test exposure using one of four TESS cameras, providing an exciting glimpse of the type of image expected from each of TESS’ four cameras. The image is centered on the southern constellation Centaurus with the bright star Beta Centauri is visible at the lower left edge. 76)

- TESS will undergo one final thruster burn on May 30 to enter its science orbit around Earth. This highly elliptical orbit will maximize the amount of sky the spacecraft can image, allowing it to continuously monitor large swaths of the sky. TESS is expected to begin science operations in mid-June after reaching this orbit and completing camera calibrations.

Figure 65: This test image from one of the four cameras aboard TESS captures a swath of the southern sky along the plane of our galaxy. More than 200,000 stars are visible in this image. TESS is expected to cover more than 400 times the amount of sky shown in this image when using all four of its cameras during science operations. The image, which is centered in the constellation Centaurus, includes dark tendrils from the Coal Sack Nebula and the bright emission nebula Ced 122 (upper right).The bright star at bottom center is Beta Centauri (image credit: NASA/MIT/TESS)
Figure 65: This test image from one of the four cameras aboard TESS captures a swath of the southern sky along the plane of our galaxy. More than 200,000 stars are visible in this image. TESS is expected to cover more than 400 times the amount of sky shown in this image when using all four of its cameras during science operations. The image, which is centered in the constellation Centaurus, includes dark tendrils from the Coal Sack Nebula and the bright emission nebula Ced 122 (upper right).The bright star at bottom center is Beta Centauri (image credit: NASA/MIT/TESS)

 


 

Sensor Complement

Four WFOV cameras

The TESS payload consists of four identical cameras and a DHU (Data Handling Unit). Each camera consists of a lens assembly with seven optical elements, and a detector assembly with four CCDs (Charge Coupled Devices) and their associated electronics. All four cameras are mounted onto a single plate (Figure 66) that is attached to the spacecraft, such that their FOVs are lined up to form a rectangle measuring 24º x 96º on the sky. Four elliptical holes in the plate allow shimless alignment of the four cameras at the desired angles. 77) 78) 79)

Each of the four cameras features:

- WFOV (Wide Field of View) of 24º x 24º

- 100 mm effective pupil diameter

- Lens assembly with 7 optical elements

- Athermal design

- 600nm - 1000 nm bandpass

- 16.8 Mpixel, low-noise, low-power, MIT/LL CCID-80 detector.

Figure 66: Illustration of the four cameras mounted on a single plate (image credit: NASA, MIT)
Figure 66: Illustration of the four cameras mounted on a single plate (image credit: NASA, MIT)

 

Detector assembly: The focal plane consists of four back-illuminated MIT/LL CCID-80 devices. The CCID-80, developed for TESS, is a deep-depletion, frame-transfer CCD with a full frame store. The device has four outputs; each output is associated with an array of 512 (H) x 2048 (V) imaging pixels, for a total imaging area of 2048 (H) x 2048 (V). The die size is 32 (W) x 64 (H) mm for an area of 20.4 cm2. 80)

The imaging array, frame store, and serial registers all consist of conventional three-phase, 15 x 15 µm pixels. There is a three-phase charge injection register at the top of the array, and the serial register support bidirectional transfer. The pixel array employs a trough design feature to provide radiation mitigation for small charge packets. To enable the desired fast frame transfer time, the image array and frame store clocks are strapped with metal interconnect to reduce the RC delay from the clock lines. The output circuit is a single-stage MOSFET similar to others demonstrated at Lincoln Laboratory.

Figure 67: The detector assembly of one of the prototype lenses. The light shield cover for the frame store regions is removed (image credit: MIT/LL)
Figure 67: The detector assembly of one of the prototype lenses. The light shield cover for the frame store regions is removed (image credit: MIT/LL)

Lincoln Laboratory supports several different styles of back-illumination processing. For TESS, a flow is used that involves: epoxy mounting the device wafer to a support wafer; wet chemical thinning the high resistivity float zone silicon to the 100 µm full depletion target; back-side passivation through an ion implantation, laser annealing sequence; deposition and patterning of antireflection and light shield coatings; and etches to provide access to the bond pads.

The true benefit of the 100 µm thick detector is shown in the Figure 68 spectral response curve. The project observed over 20% improvement in quantum efficiency at 1000 nm measurement wavelength over a 45 µm thick device. - A total of sixteen CCDs arranged in four mosaics will be needed.

Figure 68: Measured quantum efficiency for the 100 µm thick CCID-80 device compared to a 45 µm thick reference MIT/LL CCD (image credit: MIT/LL)
Figure 68: Measured quantum efficiency for the 100 µm thick CCID-80 device compared to a 45 µm thick reference MIT/LL CCD (image credit: MIT/LL)

Each of the four identical TESS lenses is an f=1:4 custom design consisting of seven optical elements, with an entrance pupil diameter of 10.5 cm (Figures 69 and 70). For ease of manufacture, all lens surfaces are spherical except for two mild aspheres. There are two separate aluminum lens barrels that are fastened and pinned together. All optical elements have antireflection coatings. The surface of one element also has a long-pass filter coating to enforce the cutoff at 600 nm. The red limit at 1000 nm is set by the quantum-efficiency curve of the CCDs (Figure 68).

Each lens forms a 24º x 24º unvignetted image on the four-CCD mosaic in its focal plane. The optical design was optimized to provide small image spots of a consistent size across the FOV (Field of View), and produce undersampled images similar to those of Kepler. At nominal focus and flight temperature (-75ºC), the 50% ensquared-energy half-width is 15 µm (one pixel or 0.35 arcmin) averaged over the FOV. Each lens is equipped with a lens hood, which reduces the effects of scattered light from the Earth and Moon (Ref. 3).

FOV (Field of View) of each lens

24º x 24º

Combined field of view

24º x 96º = 2300ºº (sq. deg.)

Entrance pupil diameter

10.5 cm

Focal ratio (f=#)

f/1.4

Wavelength range

600 - 1000 nm

Ensquared energy

50% within 15 x 15 µm (one pixel, or 0:35 x 0:35 arcmin)
90% within 60 x 60 µm (4 x 4 pixels, or 1:4 x 1:4 arcmin)

Table 2: Characteristics of the TESS lenses. Ensquared energy is the fraction of the total energy of the point-spread function that is within a square of the given dimensions centered on the peak.
Figure 69: Diagram of the TESS lens assembly, CCD focal plane, and detector electronics (image credit: NASA, TESS Team)
Figure 69: Diagram of the TESS lens assembly, CCD focal plane, and detector electronics (image credit: NASA, TESS Team)
Figure 70: Left: Two lens prototypes that were constructed. Right: The detector assembly of one of the prototype lenses. The frame-store regions of the CCDs are covered (image credit: NASA, TESS Team)
Figure 70: Left: Two lens prototypes that were constructed. Right: The detector assembly of one of the prototype lenses. The frame-store regions of the CCDs are covered (image credit: NASA, TESS Team)

 

Scanning strategy: The four cameras act as a 1 x 4 array, providing a combined FOV of 24º x 96º or 2300 square degrees (Figure 71). The north and south ecliptic hemispheres are each divided into 13 partially overlapping sectors of 24º x 96º, extending from an ecliptic latitude of 6º to the ecliptic pole. Each sector is observed continuously for two spacecraft orbits (27.4 days), with the boresight of the four-camera array pointed nearly anti-solar. After two orbits, the FOV is shifted eastward in ecliptic longitude by about 27º, to observe the next sector. Observing an entire hemisphere takes one year, and the all-sky survey takes two years.

The overlap of the sectors is illustrated in Figure 71. Approximately 30,000 square degrees are observed for at least 27 days. Close to the ecliptic poles, approximately 2800 square degrees are observed for more than 80 days. Surrounding the ecliptic poles, approximately 900 square degrees are observed for more than 300 days.

Figure 71: Left: The instantaneous combined FOV of the four TESS cameras. Middle: Division of the celestial sphere into 26 observation sectors (13 per hemisphere). Right: Duration of observations on the celestial sphere, taking into account the overlap between sectors. The dashed black circle enclosing the ecliptic pole shows the region which JWST will be able to observe at any time (image credit: TESS Team)
Figure 71: Left: The instantaneous combined FOV of the four TESS cameras. Middle: Division of the celestial sphere into 26 observation sectors (13 per hemisphere). Right: Duration of observations on the celestial sphere, taking into account the overlap between sectors. The dashed black circle enclosing the ecliptic pole shows the region which JWST will be able to observe at any time (image credit: TESS Team)

 

Photometric performance: Figure 72 shows the anticipated photometric performance of the TESS cameras. The noise sources in this model are photon-counting noise from the star and the background (zodiacal light and faint unresolved stars), dark current (negligible), readout noise, and a term representing additional systematic errors that cannot be corrected by co-trending. The most important systematic error is expected to be due to random pointing variations (”spacecraft jitter"). Because of the non-uniform quantum efficiency of the CCD pixels, motion of the star image on the CCD will introduce changes in the measured brightness, as the weighting of the image PSF (Point Spread Function) changes, and as parts of the image PSF enter and exit the summed array of pixels.

The central pixel of a stellar image will saturate at approximately IC = 7:5. However, this does not represent the bright limit for precise photometry because the excess charge is spread across other CCD pixels and is conserved, until the excess charge reaches the boundary of the CCD. As long as the photometric aperture is large enough to encompass all of the charge, high photometric precision can still be obtained. The Kepler mission demonstrated that photon-noise{limited photometry can be obtained for stars 4 mag brighter than the single-pixel saturation limit. Since similar performance is expected for TESS, the bright limit is expected to be IC~4 or perhaps even brighter.

Figure 72: Top: Expected 1σ photometric precision as a function of stellar apparent magnitude in the IC band. Contributions are from photon-counting noise from the target star and background (zodiacal light and unresolved stars), detector read noise (10 e-), and an assumed 60 ppm of incorrigible noise on hourly timescales. Bottom: The number of pixels in the photometric aperture that optimizes the signal-to-noise ratio (image credit: TESS Team)
Figure 72: Top: Expected 1σ photometric precision as a function of stellar apparent magnitude in the IC band. Contributions are from photon-counting noise from the target star and background (zodiacal light and unresolved stars), detector read noise (10 e-), and an assumed 60 ppm of incorrigible noise on hourly timescales. Bottom: The number of pixels in the photometric aperture that optimizes the signal-to-noise ratio (image credit: TESS Team)

 


References

1) “TESS - Transiting Exoplanet Survey Satellite,” NASA, URL: http://tess.gsfc.nasa.gov/

2) “TESS - Transiting Exoplanet Survey Satellite, Discovering new Earths and Super-Earths in the solar neighborhood,” NASA Facts, URL: http://tess.gsfc.nasa.gov/documents/TESS_FactSheet_Oct2014.pdf

3) George R. Ricker, Joshua N. Winn, Roland Vanderspek, David W. Latham, Gaspar A. Bakos, Jacob L. Bean, Zachory K. Berta-Thompson, Timothy M. Brown, Lars Buchhave, Nathaniel R. Butler, R. Paul Butler, William J. Chaplin, David Charbonneau, Jørgen Christensen-Dalsgaard, Mark Clampin, Drake Deming, John Doty, Nathan De Lee, Courtney Dressing, E. W. Dunham, Michael Endl, Francois Fressin, Jian Ge, Thomas Henning, Matthew J. Holman, Andrew W. Howard, Shigeru Ida, Jon M. Jenkins, Garrett Jernigan, John Asher Johnson, Lisa Kaltenegger, Nobuyuki Kawai, Hans Kjeldsen, Gregory Laughlin, Alan M. Levine, Douglas Lin, Jack J. Lissauer, Phillip MacQueen, Geoffrey Marcy, P. R. McCullough, Timothy D. Morton, Norio Narita, Martin Paegert, Enric Palle, Francesco Pepe, Joshua Pepper, Andreas Quirrenbach, S. A. Rinehart, Dimitar Sasselov, Bun'ei Sato, Sara Seager, Alessandro Sozzetti, Keivan G. Stassun, Peter Sullivan, Andrew Szentgyorgyi, Guillermo Torres, Stephane Udry, Joel Villasenor, ”The Transiting Exoplanet Survey Satellite,” Oct. 28, 2014, URL: http://arxiv.org/pdf/1406.0151.pdf

4) ”Mission History,” NASA, URL: http://tess.gsfc.nasa.gov/mission_history.html

5) http://tess.gsfc.nasa.gov/whytess.html

6) Felicia Chou, ”NASA Prepares to Launch Next Mission to Search Sky for New Worlds,” NASA Release 18-016, 28 March 2018, URL: https://www.nasa.gov/press-release/nasa-prepares-to-launch-next-mission-to-search-sky-for-new-worlds

7) ”TESS Fact Sheet,” Orbital ATK , URL:  https://web.archive.org/web/20170622223434/https://www.orbitalatk.com/space-systems/science-national-security-satellites/science-environment-satellites/docs/FS011_13_OA_3862%20TESS.pdf

8) Claire Saravia, Rob Garner, ”NASA’s Transiting Exoplanet Survey Satellite Arrives at Kennedy Space Center for Launch,” NASA, Feb. 15, 2018, URL: https://www.nasa.gov/feature/goddard/2018/nasa-s-transiting-exoplanet-survey-satellite-arrives-at-kennedy-space-center-for-launch

9) ”SpaceX's Triple Play Turns into a Home Run With Launch and Subsequent Deployment of TESS and Return of Rocket,” Satnews Daily, 18 April, 2018, URL: http://www.satnews.com/story.php?number=992398645

10) Stephen Clark, ”Launch Schedule,” Spaceflight Now, URL: https://spaceflightnow.com/launch-schedule/

11) ”NASA’s TESS Mission Will Provide Exciting Exoplanet Targets for Years to Come,” Oct. 5, 2016, URL: https://www.nasa.gov/feature/goddard/2016/nasa-s-tess-mission-will-provide-exciting-exoplanet-targets-for-years-to-come

12) https://tess.gsfc.nasa.gov/launch.html

13) Matt Williams, “Exoplanet-Hunting TESS Satellite to be Launched by SpaceX,” Universe Today, Jan. 6, 2015, URL: http://www.universetoday.com/117845/exoplanet-hunting-tess-satellite-to-be-launched-by-spacex/

14) Joseph W. Gangestad, Gregory A. Henning, Randy R. Persinger, George R. Ricker, ”A High Earth, Lunar Resonant Orbit for Lower Cost Space Science Missions,” Advances in the Astronautical Sciences, Vol. 150, 2014, URL: http://arxiv.org/pdf/1306.5333v3.pdf

15) ”Two new rocky planets in the solar neighborhood,” IAC, 15 June 2022, URL: https://www.iac.es/en/outreach/news/two-new-rocky-planets-solar-neighborhood

16) R. Luque, B. J. Fulton, M. Kunimoto, P. J. Amado, P. Gorrini, S. Dreizler, C. Hellier, G. W. Henry, K. Molaverdikhani, G. Morello, L. Peña-Moñino, M. Pérez-Torres, F. J. Pozuelos, Y. Shan, G. Anglada-Escudé, V. J. S. Béjar, G. Bergond, A. W. Boyle, J. A. Caballero, D. Charbonneau, D. R. Ciardi, S. Dufoer, N. Espinoza, M. Everett, D. Fischer, A. P. Hatzes, Th. Henning, K. Hesse, A. Howard, S. B. Howell, H. Isaacson, S. V. Jeffers, J. M. Jenkins, S. R. Kane, J. Kemmer, S. Khalafinejad, R. C. Kidwell Jr., D. Kossakowski, D. W. Latham, J. Lillo-Box, J. J. Lissauer, D. Montes, J. Orell-Miquel, E. Pallé, D. Pollacco, A. Quirrenbach, S. Reffert, A. Reiners, I. Ribas, G. R. Ricker, L. A. Rogers, J. Sanz-Forcada, M. Schlecker, A. Schweitzer, S. Seager, A. Shporer, K. G. Stassun, S. Stock, L. Tal-Or, E. B. Ting, T. Trifonov, S. Vanaverbeke, R. Vanderspek, J. Villaseñor, J. N. Winn, J. G. Winters, M. R. Zapatero Osorio, ”The HD 260655 system: Two rocky worlds transiting a bright M dwarf at 10 pc,” Astronomy & Astrophysics manuscript no. main, 15 June 2022, URL: https://arxiv.org/pdf/2204.10261.pdf

17) ”Cosmic Milestone: NASA Confirms 5,000 Exoplanets,” NASA/JPL News, 21, 2022, URL: https://www.jpl.nasa.gov/news/cosmic-milestone-nasa-confirms-5000-exoplanets?utm_source=iContact&utm_medium=email&utm_campaign=nasajpl&utm_content=daily20220321-1

18) ”TESS Science Office at MIT hits milestone of 5,000 exoplanet candidates,” MIT News, 20 January 2022, URL: https://news.mit.edu/2022/tess-science-office-mit-hits-milestone-5000-exoplanet-candidates-0120

19) ”Newly-Found Planets On The Edge Of Destruction,” Keck Observatory, 13 January 2022, URL: https://keckobservatory.org/doomed-planets/

20) ”An eight-hour year,” DLR News, 2 December 2021 [web source no longer available]

21) Kristine W. F. Lam, Szilárd Csizmadia, Nicola Astudillo-Defru, Xavier Bonfils, Davide Gandolfi, Sebastiano Padovan, Massimiliano Esposito, Coel Hellier, Teruyuki Hirano, John Livingston, Felipe Murgas, Alexis M. S. Smith, Karen A. Collins, Savita Mathur, Rafael A. Garcia, Steve B. Howell, Nuno C. Santos, Fei Dai, George R. Ricker, Roland Vanderspek, David W. Latham, Sara Seager, Joshua N. Winn, Jon M. Jenkins, Simon Albrecht, Jose M. Almenara, Etienne Artigau, Oscar Barragán, François Bouchy, Juan Cabrera, David Charbonneau, et al., ”GJ 367b: A dense, ultrashort-period sub-Earth planet transiting a nearby red dwarf star,” Science, Vol. 374, Issue 6572, pp. 1271-1275, https://www.science.org/doi/10.1126/science.aay3253

22) Arian Bastani, ”Unravelling the mystery of brown dwarfs,” NCCR-PlanetS, 27 August 2021, URL: https://nccr-planets.ch/blog/2021/08/27/unravelling-the-mystery-of-brown-dwarfs/

23) Nolan Grieves, François Bouchy, Monika Lendl, Theron Carmichael, Ismael Mireles, Avi Shporer, Kim K. McLeod, Karen A. Collins, Rafael Brahm, Keivan G. Stassun, Sam Gill, Luke G. Bouma, Tristan Guillot, Marion Cointepas, Leonardo A. Dos Santos, Sarah L. Casewell, Jon M. Jenkins, Thomas Henning, Louise D. Nielsen, Angelica Psaridi, Stéphane Udry, Damien Ségransan, Jason D. Eastman, George Zhou, Lyu Abe, Abelkrim Agabi, Gaspar Bakos, David Charbonneau, Kevin I. Collins, Knicole D. Colon, Nicolas Crouzet, Georgina Dransfield, Phil Evans, Robert F. Goeke, Rhodes Hart, Jonathan M. Irwin, Eric L. N. Jensen, Andrés Jordán, John F. Kielkopf, David W. Latham, Wenceslas Marie-Sainte, Djamel Mékarnia, Peter Nelson, Samuel N. Quinn, Don J. Radford, David R. Rodriguez, Pamela Rowden, François–Xavier Schmider, Richard P. Schwarz, Jeffrey C. Smith, Chris Stockdale, Olga Suarez, Thiam-Guan Tan, Amaury H. M. J. Triaud, William Waalkes and Geof Wingham, ”Populating the brown dwarf and stellar boundary: Five stars with transiting companions near the hydrogen-burning mass limit,” Astronomy & Astrophysics, Volume 652, 21 August 2021, https://doi.org/10.1051/0004-6361/202141145

24) Jeff Foust, ”TESS considering companion smallsat mission,” SpaceNews, 6 August 2021, URL: https://spacenews.com/tess-considering-companion-smallsat-mission/

25) Francis Reddy,”NASA’s TESS Tunes into an All-sky ‘Symphony’ of Red Giant Stars,” NASA Feature, 4 August 2021, URL: https://www.nasa.gov/feature/goddard/2021/nasa-s-tess-tunes-into-an-all-sky-symphony-of-red-giant-stars

26) Jeanette Kazmierczak, ”NASA’s TESS Discovers Stellar Siblings Host ‘Teenage’ Exoplanets,” NASA Feature, 12 July 2021, URL: https://www.nasa.gov/feature/goddard/2021/nasa-s-tess-discovers-stellar-siblings-host-teenage-exoplanets

27) ”Not just for finding planets: Exoplanet-hunter TESS telescope spots bright gamma-ray burst,” SMU (Southern Methodist University) Dallas, TX, 30 April 2021, URL: https://www.smu.edu/News/2021/Research/Gamma-ray-burst-found-by-SMU-astrophysicist

28) Krista Lynne Smith, Ryan Ridden-Harper, Michael Fausnaugh, Tansu Daylan, Nicola Omodei, Judith Racusin, Zachary Weaver, Thomas Barclay, Péter Veres, D. Alexander Kann, and Makoto Arimoto, ”GRB 191016A: A Long Gamma-Ray Burst Detected by TESS,” The Astrophysical Journal, Volume 911, Number 1, Published: 14 April 2021, https://doi.org/10.3847/1538-4357/abe6a2

29) ”NASA's TESS Discovers New Worlds in a River of Young Stars,” NASA Feature, 12 February 2021, URL: https://www.nasa.gov/feature/goddard/2021/nasa-s-tess-discovers-new-worlds-in-a-river-of-young-stars

30) Jeanette Kazmierczak, ”Discovery Alert: First Six-star System Where All Six Stars Undergo Eclipses,” NASA News, 27 January 2021, URL: https://exoplanets.nasa.gov/news/1672/discovery-alert-first-six-star-system-where-all-six-stars-undergo-eclipses/

31) Brian P. Powell, Veselin B. Kostov, Saul A. Rappaport, Tamas Borkovits, Petr Zasche, Andrei Tokovinin, Ethan Kruse, David W. Latham, Benjamin T. Montet, Eric L. N. Jensen, Rahul Jayaraman, Karen A. Collins, Martin Masek, Coel Hellier, Phil Evans, Thiam-Guan Tan, Joshua E. Schlieder, Guillermo Torres, Alan P. Smale, Adam H. Friedman, Thomas Barclay, Robert Gagliano, Elisa V. Quintana, Thomas L. Jacobs, Emily A. Gilbert, Martti H. Kristiansen, Knicole D. Colon, Daryll M. LaCourse, Greg Olmschenk, Mark Omohundro, Jeremy D. Schnittman, Hans M. Schwengeler, Richard K. Barry, Ivan A. Terentev, Patricia Boyd, Allan R. Schmitt, Samuel N. Quinn, Andrew Vanderburg, Enric Palle, James Armstrong, George R. Ricker, Roland Vanderspek, S. Seager, Joshua N. Winn, Jon M. Jenkins, Douglas A. Caldwell, Bill Wohler, Bernie Shiao, Christopher J. Burke, Tansu Daylan, Joel Villasenor, ”TIC 168789840: A Sextuply-Eclipsing Sextuple Star System,” https://arxiv.org/abs/2101.03433, Draft version January 12, 202

32) ”NASA Missions Help Investigate an ‘Old Faithful’ Active Galaxy,” NASA Feature, 12 January 2021, URL: https://www.nasa.gov/feature/goddard/2021/nasa-missions-help-investigate-an-old-faithful-active-galaxy

33) Felicia Chou, Claire Andreoli, ”NASA Missions Spy First Possible ‘Survivor’ Planet Hugging White Dwarf Star,” NASA Press Release 20-086, 16 September 2020, URL: https://www.nasa.gov/press-release/nasa-missions-spy-first-possible-survivor-planet-hugging-white-dwarf-star

34) Felicia Chou, Claire Andreoli, Calla Cofield, ”NASA Missions Spy First Possible Planet Hugging a Stellar Cinder,” NASA/JPL News, 16 September 2020, URL: https://www.jpl.nasa.gov/news/news.php?release=2020-177

35) Francis Reddy, ”NASA’s Planet Hunter Completes Its Primary Mission,” NASA Feature, 12 August 2020, URL: https://www.nasa.gov/feature/goddard2020/nasa-s-planet-hunter-completes-its-primary-mission

36) ”NASA’s TESS Delivers New Insights Into an Ultrahot World,” NASA Feature, 30 June 2020, URL: https://www.nasa.gov/feature/goddard/2020/nasa-s-tess-delivers-new-insights-into-an-ultrahot-world

37) John P. Ahlers, Marshall C. Johnson, Keivan G. Stassun, Knicole D. Colón, Jason W. Barnes, Daniel J. Stevens, Thomas Beatty, B. Scott Gaudi, Karen A. Collins, Joseph E. Rodriguez, George Ricker, Roland Vanderspek, David Latham, Sara Seager, Joshua Winn, Jon M. Jenkins, Douglas A. Caldwell, Robert F. Goeke, Hugh P. Osborn, Martin Paegert, Pam Rowden, and Peter Tenenbaum, ”KELT-9 b's Asymmetric TESS Transit Caused by Rapid Stellar Rotation and Spin–Orbit Misalignment,” The Astronomical Journal, Vol. 160, No 1, Published: 5 June 2020, https://doi.org/10.3847/1538-3881/ab8fa3

38) ”NASA's TESS, Spitzer Missions Discover a World Orbiting a Unique Young Star,” NASA/JPL News, 24 June 2020, URL: https://www.jpl.nasa.gov/news/news.php?release=2020-117

39) P. Plavchan, T. Barclay, J. Gagné, et al., ”A planet within the debris disk around the pre-main-sequence star AU Microscopii,” Nature Volume 582, pp: 497–500 (2020), Published: 24 June 2020, https://doi.org/10.1038/s41586-020-2400-z

40) Calla Cofield, ”Young Giant Planet Offers Clues to Formation of Exotic Worlds,” NASA, 22 June 2020, URL: https://www.nasa.gov/feature/jpl/young-giant-planet-offers-clues-to-formation-of-exotic-worlds

41) Aaron C. Rizzuto, Elisabeth R. Newton, Andrew W. Mann, Benjamin M. Tofflemire, Andrew Vanderburg, Adam L. Kraus, Mackenna L. Wood, Samuel N. Quinn, George Zhou, Pa Chia Thao, Nicholas M. Law, Carl Ziegler, and César Briceño, ”TESS Hunt for Young and Maturing Exoplanets (THYME). II. A 17 Myr Old Transiting Hot Jupiter in the Sco-Cen Association,” The Astronomical Journal, Volume 160, No 1, Published 22 June 2020, https://doi.org/10.3847/1538-3881/ab94b7

42) Jeanette Kazmierczak,”NASA’s TESS Enables Breakthrough Study of Perplexing Stellar Pulsations,” NASA, 13 May 2020, URL: https://www.nasa.gov/feature/goddard/2020/nasa-s-tess-enables-breakthrough-study-of-perplexing-stellar-pulsations

43) T. R. Bedding, S. J. Murphy, D. R. Hey, et al. ”Very regular high-frequency pulsation modes in young intermediate-mass stars,” Nature Volume 581, pp: 147–151, Published: 13 May 2020, https://doi.org/10.1038/s41586-020-2226-8

44) ”Scientists Announce Orbital Tilt Measurements in Youngest Planetary Star System Ever,” CfA (Center for Astrophysics), Release No.: 2020-03, 9 March 2020, URL: https://web.archive.org/web/20200812185340/https://www.cfa.harvard.edu/news/2020-03

45) Benjamin T. Montet, Adina D. Feinstein, Rodrigo Luger, Megan E. Bedell, Michael A. Gully-Santiago, Johanna K. Teske, Sharon Xuesong Wang, R. Paul Butler, Erin Flowers, Stephen A. Shectman, Jeffrey D. Crane, and Ian B. Thompson, ”The Young Planet DS Tuc Ab Has a Low Obliquity,” The Astronomical Journal, Volume 159, Number 3, Published: 20 February 2020, https://doi.org/10.3847/1538-3881/ab6d6d

46) Francis Reddy, ”Surprise! TESS Shows Ancient North Star Undergoes Eclipses,” NASA, 7 January 2020, URL: https://www.nasa.gov/feature/goddard/2020/surprise-tess-shows-ancient-north-star-undergoes-eclipses

47) Jeanette Kazmierczak, Rob Garner, ”NASA Planet Hunter Finds its 1st Earth-size Habitable-zone World,” NASA, 7 January 2020, URL: https://www.nasa.gov/feature/goddard/2020/nasa-planet-hunter-finds-its-1st-earth-size-habitable-zone-world

48) ”NASA’s Exoplanet-Hunting Mission Catches a Natural Comet Outburst in Unprecedented Detail,” NASA, 3 December 2019, URL: https://www.nasa.gov/feature/goddard/2019/nasa-s-exoplanet-hunting-mission-catches-a-natural-comet-outburst-in-unprecedented-detail

49) Tony L. Farnham, Michael S. P. Kelley, Matthew M. Knight, and Lori M. Feaga, ”First Results from TESS Observations of Comet 46P/Wirtanen,” The Astrophysical Journal Letters, Volume 886, Number 2, Published 22 November 2019, https://doi.org/10.3847/2041-8213/ab564d

50) ”UMD Astronomers Catch a Natural Comet Outburst in Unprecedented Detail,” UMD, 3 December 2019, URL: [web source no longer available]

51) ”NASA’s TESS Presents Panorama of Southern Sky,” NASA, 5 November 2019, URL: https://www.nasa.gov/feature/goddard/2019/nasa-s-tess-presents-panorama-of-southern-sky

52) ”TESS reveals an improbable planet,” IA, 29 October 2019, URL: http://www.iastro.pt/news/news.html?ID=118

53) Tiago L. Campante, Enrico Corsaro, Mikkel N. Lund, Benoît Mosser, Aldo Serenelli, Dimitri Veras, Vardan Adibekyan, H. M. Antia, Warrick Ball, Sarbani Basu, Timothy R. Bedding, Diego Bossini, Guy R. Davies, Elisa Delgado Mena, Rafael A. García, Rasmus Handberg, Marc Hon, Stephen R. Kane, Steven D. Kawaler, James S. Kuszlewicz, Miles Lucas, Savita Mathur, Nicolas Nardetto, Martin B. Nielsen, Marc H. Pinsonneault, Sabine Reffert, Víctor Silva Aguirre, Keivan G. Stassun, Dennis Stello, Stephan Stock, Mathieu Vrard, Mutlu Yıldız, William J. Chaplin, Daniel Huber, Jacob L. Bean, Zeynep Çelik Orhan, Margarida S. Cunha, Jørgen Christensen-Dalsgaard, Hans Kjeldsen, Travis S. Metcalfe, Andrea Miglio, Mário J. P. F. G. Monteiro, Benard Nsamba, Sibel Örtel, Filipe Pereira, Sérgio G. Sousa, Maria Tsantaki, and Margaret C. Turnbull, ”TESS Asteroseismology of the Known Red-giant Host Stars HD 212771 and HD 203949,” The Astrophysical Journal, Volume 885, Number 1, Published: 29 October 2019, https://doi.org/10.3847/1538-4357/ab44a8

54) ”NASA’s TESS Mission Spots Its 1st Star-shredding Black Hole,” NASA Feature, 26 September 2019, URL: https://www.nasa.gov/feature/goddard/2019/nasa-s-tess-mission-spots-its-1st-star-shredding-black-hole

55) Thomas W.-S. Holoien, Patrick J. Vallely, Katie Auchett, K. Z. Stanek, Christopher S. Kochanek, K. Decker French, Jose L. Prieto, Benjamin J. Shappee, Jonathan S. Brown, Michael M. Fausnaugh, Subo Dong, Todd A. Thompson, Subhash Bose, Jack M. M. Neustadt, P. Cacella, J. Brimacombe, Malhar R. Kendurkar, Rachael L. Beaton, Konstantina Boutsia, Laura Chomiuk, Thomas Connor, Nidia Morrell, Andrew B. Newman, Gwen C. Rudie, Laura Shishkovksy, and Jay Strader, ”Discovery and Early Evolution of ASASSN-19bt, the First TDE Detected by TESS,” The Astrophysical Journal, Volume 883, Number 2, Published: 26 September 2019, https://doi.org/10.3847/1538-4357/ab3c66

56) Francis Reddy, ”NASA’s TESS Mission Scores ‘Hat Trick’ With 3 New Worlds,” NASA, 29 July 2019, URL: https://www.nasa.gov/feature/goddard/2019/nasa-s-tess-mission-scores-hat-trick-with-3-new-worlds

57) Maximilian N. Günther, Francisco J. Pozuelos, [....], Ian A. Waite, ”A super-Earth and two sub-Neptunes transiting the nearby and quiet M dwarf TOI-270,” Nature Astronomy, Published 29 July 2019, https://doi.org/10.1038/s41550-019-0845-5

58) Ravyn Cullor, ”NASA’s TESS Mission Completes First Year of Survey, Turns to Northern Sky,” NASA, 25 July 2019, URL: https://www.nasa.gov/feature/goddard/2019/nasa-s-tess-mission-completes-first-year-of-survey-turns-to-northern-sky/

59) Jeanette Kazmierczak, ”NASA’s TESS Mission Finds Its Smallest Planet Yet,” NASA, 27 June 2019, URL: https://www.nasa.gov/feature/goddard/2019/nasa-s-tess-mission-finds-its-smallest-planet-yet

60) Veselin B. Kostov, Joshua E. Schlieder, Thomas Barclay, Elisa V. Quintana, Knicole D. Colón, Jonathan Brande, Karen A. Collins, Adina D. Feinstein, Samuel Hadden, Stephen R. Kane, et al., ”The L 98-59 System: Three Transiting, Terrestrial-size Planets Orbiting a Nearby M Dwarf,” The Astronomical Journal, Volume 158, Number 1, Published 27 June 2019, https://iopscience.iop.org/article/10.3847/1538-3881/ab2459

61) ”NASA’s TESS Discovers its First Earth-size Planet,” NASA, 15 April 2019, URL: https://www.nasa.gov/feature/goddard/2019/nasa-s-tess-discovers-its-first-earth-size-planet

62) Diana Dragomir, Johanna Teske, Maximilian N. Günther, Damien Ségransan, Jennifer A. Burt, Chelsea X. Huang, Andrew Vanderburg, Elisabeth Matthews, Xavier Dumusque, Keivan G. Stassun, Joshua Pepper, George R. Ricker, Roland Vanderspek, David W. Latham, Sara Seager, Joshua N. Winn, Jon M. Jenkins, Thomas Beatty, François Bouchy, Timothy M. Brown, R. Paul Butler, David R. Ciardi, Jeffrey D. Crane, Jason D. Eastman, Luca Fossati, Jim Francis, Benjamin J. Fulton, B. Scott Gaudi, Robert F. Goeke, David James, Todd C. Klaus, Rudolf B. Kuhn, Christophe Lovis, Michael B. Lund, Scott McDermott, Martin Paegert, Francesco Pepe, Joseph E. Rodriguez, Lizhou Sha, Stephen A. Shectman, Avi Shporer, Robert J. Siverd, Aylin Garcia Soto, Daniel J. Stevens, Joseph D. Twicken, Stéphane Udry, Steven Villanueva Jr., Sharon X. Wang, Bill Wohler, Xinyu Yao, and Zhuchang Zhan, ”TESS Delivers Its First Earth-sized Planet and a Warm Sub-Neptune,” The Astrophysical Journal Letters, Volume 875, Number 2, Published: 15 April 2019, https://doi.org/10.3847/2041-8213/ab12ed

63) Linda B. Glaser, ”The hunt is on for closest Earth-like planets,” Cornell Chronicle, March 26, 2019, URL: http://news.cornell.edu/stories/2019/03/hunt-closest-earth-planets

64) https://exoplanets.nasa.gov/news/1560/the-hunt-is-on-for-closest-earth-like-planets/

65) Lisa Kaltenegger, Joshua Pepper, Keivan. Stassun and Ryan Oelkers,”TESS Habitable Zone Star Catalog,” The Astrophysical Journal Letters, Volume 874, Number 1, Published 26 March 2019, https://doi.org/10.3847/2041-8213/ab0e8d

66) Jennifer Chu, ”TESS discovers its third new planet, with longest orbit yet,” MIT News Office, 7 January 2019, URL: http://news.mit.edu/2019/tess-discovers-third-planet-0107

67) Diana Dragomir, Johanna Teske, Maximilian N. Gunther, Damien Ségransan, Jennifer A. Burt, Chelsea X. Huang, Andrew Vanderburg, Elisabeth Matthews, Xavier Dumusque, Keivan G. Stassun, Joshua Pepper, George R. Ricker, Roland Vanderspek, David W. Latham, Sara Seager, Joshua N. Winn, Jon M. Jenkins, Thomas Beatty, François Bouchy, R. Paul Butler, Jeffrey D. Crane, Jason D. Eastman, Jim Francis, B. Scott Gaudi, Robert F. Goeke, David James, Todd C. Klaus, Rudolf B. Kuhn, Christophe Lovis, Michael B. Lund, Scott McDermott, Martin Paegert, Francesco Pepe, Joseph E. Rodriguez, Lizhou Sha, Stephen A. Shectman, Robert J. Siverd, Aylin Garcia Soto, Daniel J. Stevens, Ian B. Thompson, Joseph D. Twicken, Stéphane Udry, Steven Villanueva Jr., Sharon X. Wang, Bill Wohler, Xinyu Yao, Zhuchang Zhan, the TESS Team”The Longest Period TESS Planet Yet: A Sub-Neptune Transiting A Bright, Nearby K Dwarf Star,” Astrophysical Journal Letters, Draft version 3 January 2019, URL: https://arxiv.org/pdf/1901.00051.pdf

68) ”NASA's TESS Rounds Up its First Planets, Snares Far-flung Supernovae,” NASA, 7 January 2019, URL: https://exoplanets.nasa.gov/news/1542/nasas-tess-rounds-up-its-first-planets-snares-far-flung-supernovae/

69) Scott Wiessinger, Aaron E. Lepsch, Jeanette Kazmierczak, Francis Reddy, Padi Boyd,”Three NASA Missions Return 1st-Light Data,” NASA/GSFC, 21 September 2018, URL: https://www.nasa.gov/feature/goddard/2018/three-nasa-missions-return-1st-light-data

70) Chelsea X. Huang, Jennifer Burt, Andrew Vanderburg, Maximilian N. Günther, Avi Shporer, Jason A. Dittmann, Joshua N. Winn, Rob Wittenmyer, Lizhou Sha, Stephen R. Kane, George R. Ricker, Roland K. Vanderspek, David W. Latham, Sara Seager, Jon M. Jenkins, Douglas A. Caldwell, Karen A. Collins, Natalia Guerrero, Jeffrey C. Smith, Samuel N. Quinn, Stéphane Udry, Francesco Pepe, François Bouchy, Damien Ségransan, Christophe Lovis, David Ehrenreich, Maxime Marmier, Michel Mayor, Bill Wohler, Kari Haworth, Edward H. Morgan, Michael Fausnaugh, David R. Ciardi, Jessie Christiansen, David Charbonneau, Diana Dragomir, Drake Deming, Ana Glidden, Alan M. Levine, P. R. McCullough, Liang Yu, Norio Narita, Tam Nguyen, Tim Morton, Joshua Pepper, András Pál1, Joseph E. Rodriguez, Keivan G. Stassun, Guillermo Torres, Alessandro Sozzetti, John P. Doty, Jørgen Christensen-Dalsgaard, Gregory Laughlin, Mark Clampin, Jacob L. Bean, Lars A. Buchhave, G. Á. Bakos, Bun'ei Sato, Shigeru Ida, Lisa Kaltenegger, Enric Palle, Dimitar Sasselov, R. P. Butler, Jack Lissaue, Jian Ge, and S. A. Rinehart, ”TESS Discovery of a Transiting Super-Earth in the pi Mensae System,” The Astrophysical Journal Letters, Volume 868, Number 2, Published 30 November 2018, https://doi.org/10.3847/2041-8213/aaef91

71) ”Sector 1 and 2 data now available at MAST,” NASA, 6 December 2018, URL: https://heasarc.gsfc.nasa.gov/docs/tess/sector-1-and-2-data-now-available-at-mast.html

72) ”NASA’s Planet-Hunting TESS Catches a Comet Before Starting Science,” NASA, 6 August 2018, URL: https://www.nasa.gov/feature/goddard/2018/nasa-s-planet-hunting-tess-catches-a-comet-before-starting-science

73) ”NASA’s TESS Spacecraft Starts Science Operations,” NASA, 27 July 2018, URL: https://www.nasa.gov/feature/goddard/2018/nasa-s-tess-spacecraft-starts-science-operations

74) ”NASA’s TESS Spacecraft Continues Testing Prior to First Observations,” NASA, 11 July 2018, URL: https://directory.eoportal.org/web/eoportal/satellite-missions

75) ”TESS successfully completes lunar flyby,” NASA, 21 May 2018, URL: https://heasarc.gsfc.nasa.gov/docs/tess/tess-successfully-completes-lunar-flyby.html

76) ”NASA’s New Planet Hunter Snaps Initial Image, Swings by Moon Toward Final Orbit,” MIT, 18 May 2018, URL: https://tess.mit.edu/news/nasas-new-planet-hunter-snaps-initial-image-swings-by-moon-toward-final-orbit/

77) ”TESS Science Instrument,” NASA, URL: http://tess.gsfc.nasa.gov/instrument.html

78) ”TESS - Transiting Exoplanet Survey Satellite,” MIT, 2014, URL: http://www.stsci.edu/~pmcc/TESS/TESS_AAS_2014_factsheet.pdf

79) Akshata Krishnamurthy, Joel Villasenor, Sara Seager, George Ricker, Roland Vanderspek, ”The TESS Mission: Instrument Noise Characterization for Precise Photometric Performance Evaluation and Science Sensitivity Analysis,” Proceedings of the 68th IAC (International Astronautical Congress), Adelaide, Australia, 25-29 Sept. 2017, paper: IAC-17-A7.1.3

80) V. Suntharalingam, J. S. Ciampi, M. J. Cooper, R. D. Lambert, D. M. O’Mara, I. Prigozhin, D. J. Young, K. Warner, B. E. Burke, ”Scientific, Back-Illuminated CCD Development for the Transiting Exoplanet Survey Satellite,” Image Sensors World, Vaals, The Netherlands, June 8-11, 2015 , URL: http://www.imagesensors.org/Past%20Workshops/2015%20Workshop/2015%20Papers/Sessions/Session_10/10-01_Suntharalingam_IISW2015.pdf
 


The information compiled and edited in this article was provided by Herbert J. Kramer from his documentation of: ”Observation of the Earth and Its Environment: Survey of Missions and Sensors” (Springer Verlag) as well as many other sources after the publication of the 4th edition in 2002. - Comments and corrections to this article are always welcome for further updates (eoportal@symbios.space).

 

Spacecraft    Launch    Mission Status    Sensor Complement    References    Back to top