Minimize GHGSat Constellation

GHGSat microsatellite constellation

Spacecraft    Launch    Mission Status     Sensor Complement    References

In June 2016, GHGSat-D (Claire) was launched, becoming the first high-resolution microsatellite designed to measure greenhouse gas emissions from point sources, such as industrial facilities and power plants. The bus was provided by the UTIAS/SFL (University of Toronto, Institute for Aerospace Studies /Space Flight Laboratory) under contract to GHGSat Inc. of Montreal, Canada. Claire has successfully demonstrated greenhouse gas measurements around the world, and several such measurements of methane emissions have been released publicly in the last year. In order to extend the service capability and as a precursor to a full constellation, GHGSat-C1 and GHGSat-C2 are the next two microsatellites under development. 1)

With a mass of approximately 16 kg each, the design follows its predecessor Claire in leveraging SFL’s Next Generation Earth Monitoring and Observation (NEMO) bus. Bus platform modifications such as enhanced electromagnetic compatibility and hardware redundancy will result in increased performance and reliability. Enhancements to the payload include reduced stray light, onboard calibration capability, and additional radiation mitigation. Furthermore, the inclusion of an optical downlink as a technology demonstrator will result in greater data downlink capacity. These upgrades will be entirely accomplished with the same volume and power constraints as Claire. The development of the GHGSat-C1 and GHGSat-C2 satellites is currently underway and the first of the two is scheduled for launch at the beginning of 2019.

Mission objectives: GHGSat’s idea started with the implementation of carbon cap-and-trade programs in various Canadian provinces and US states. 2) Several provinces in Canada have carbon pricing systems in place. British Columbia has had a carbon tax in place since 2008, and Quebec and Ontario adopted a cap-and-trade system in 2013 and 2017, respectively. The vision of GHGSat is to be the global standard for emissions across the world. The GHGSat microsatellites have a different observing strategy than other satellites on orbit with the capability of detecting carbon dioxide and methane. Whereas previous satellites have had spatial resolution on the order of kilometers, the spatial resolution of the GHGSat microsatellites is less than 50 m.

Background: The increase of atmospheric concentration of greenhouse gases (GHG), such as carbon dioxide (CO2) and methane (CH4) is one of the factors contributing to Earth’s changing climate. Similar to other industrialized countries, in Canada carbon dioxide is the primary GHG emitted through human activities via the combustion of fossil fuels. The second highest emission is methane, sources of which include livestock, landfills, coal mines, and wastewater management. Canada takes significant steps to address climate change by implementing national plans to reduce GHG emissions and by transitioning to a clean growth economy. These goals flow down to all sectors of the economy and a report is submitted annually to the United Nations Framework Convention on Climate Change (UNFCCC) that includes estimates of the CO2 equivalent in six economic sectors, shown in Figure 1.


Figure 1: Canada’s GHG emissions by economic sector, breakdown by IPCC (Inter-Governmental Panel for Climate Change) Sector 2015 3)

Development status

• December 8, 2021: GHGSat, a Canadian company planning a constellation of satellites to monitor greenhouse gas emissions, announced Dec. 8 it will launch its next three satellites on a Falcon 9 in mid-2022. 4) 5)

- The company said the three nanosatellites, GHGSat-C3, -C4 and -C5, will go on SpaceX’s Transporter-5 rideshare mission scheduled for the summer of 2022. The company did not disclose the terms of the contract.

- The three satellites, each with a mass of 15 kg, are being built by the University of Toronto’s Space Flight Laboratory (SFL) with gas detection payloads provided by ABB. GHGSat said that the payload for GHGSat-C3 has been integrated with the spacecraft, and the payloads for GHGSat-C4 and -C5 will be integrated later in December.

- The three new satellites, built under a contract awarded in November 2020, are similar to the GHGSat-C1 and -C2 satellites launched in September 2020 and January 2021, respectively, also built by SFL. The new satellites include improvements in their data processing and communications subsystems.

- GHGSat is developing a constellation of satellites to track emissions of greenhouse gases, notably methane, from oil and gas facilities and other industries. The company raised $45 million in a Series B round in July to fund development of those satellites and secured $20 million Canadian ($15.8 million) in November from the Canadian government for that satellite system.

- The company and the Canadian government announced at the COP26 climate summit in Scotland in November that they would contribute data from those satellites to the International Methane Emissions Observatory, a project to collect and verify emissions data. The data will be used to locate and mitigate sources of methane emissions.

- “Satellite data is critical for stakeholders globally to take immediate action for a sustainable future. GHGSat is serving this need with our growing constellation,” Stephane Germain, chief executive of GHGSat, said in a statement.

- In addition to the three satellites scheduled to launch in mid-2022, the company is starting planning for seven more satellites. Six of the satellites, GHGSat-C6 through -C11, will be used for tracking emissions, while GHGSat-C12 will carry a payload for monitoring carbon dioxide emissions.

- GHGSat has ordered the payloads for those seven satellites from ABB. A company spokesperson said those satellites are projected to launch at the end of 2023.

• November 16, 2020: UTIAS/SFL has been awarded a contract by GHGSat of Montreal to build the next three microsatellites in its commercial greenhouse gas monitoring constellation. 6)

- “SFL congratulates GHGSat on its success in providing commercial greenhouse gas monitoring services from space,” said SFL Director, Dr. Robert E. Zee. “This contract highlights GHGSat’s need to expand data collection capacity to meet the growing demand for its valuable services.”

- Greenhouse gas emissions detected and measured by the satellites are processed into emission reports and other products by GHGSat on behalf of a broad range of customers, including energy facilities, government agencies, and environmental organizations.

- “SFL has proven their technical expertise with our first two satellites. We are looking forward to this next phase of our partnership to support the growth of GHGSat’s constellation,” said Stephane Germain, CEO of GHGSat.

- In just two months since its launch, GHGSat-C1 has achieved remarkable results detecting small methane emissions from point sources on the ground. In one test area, the satellite pinpointed five separate methane emissions, two of which were smaller than 220 kg/hr, a notable performance improvement on GHGSat’s demonstration satellite (Claire).

- GHGSat-C1’s ability to detect and measure small point sources of greenhouse gas emissions is due in part to the precise attitude control and target tracking capability of the SFL NEMO bus. Rare among satellite platforms of this size and relatively low cost, precise pointing of the onboard sensor is made possible by an accurate and stable platform – an important factor in SFL’s selection to build the GHGSat microsatellites.

- “We have a very mature, well-developed, and high-performance attitude control system that can handle various maneuvers and pointing modes with relative ease,” said Zee. “We fine-tuned the attitude control required for GHGSat-C1 by leveraging the results from the GHGSat-D demonstration mission, and we will make continued advancements in the next GHGSat constellation.”

• October 6, 2020: GHGSat has signed an agreement with the leading global technology company, ABB (ABBN: SIX Swiss Ex, Quebec, Canada) to deliver the payloads for GHGSat’s next 3 methane detecting satellites – a significant milestone in the firm’s plan to have a constellation of 10 spacecraft in orbit by the end of 2022. 7)

- GHGSat is unique in operating satellites able to detect greenhouse gases (GHG) in high-resolution, a technology the company has demonstrated in space since 2016. While government GHG sensors in orbit provide regional scale measurements and global trends, GHGSat’s satellites are specifically designed to detect and quantify methane emissions from individual facilities. GHGSat’s sensor technology enables unprecedented leak monitoring capability as detection of sources 100 times smaller is possible with a resolution that is 100 times higher.

- Accurate, cost-effective monitoring is vital as methane has a global warming potential about 84 times greater than that of carbon dioxide over 20 years. GHGSat’s space-based data and analytics enable regulators and operators in sectors such as oil and gas, waste management, mining, energy, and agriculture to properly assess and track methane emissions, and take prompt action to address leaks.

- This capability will be further enhanced as GHGSat’s fleet expands in the coming years. “Iris” (GHGSat-C1), the company’s second satellite, launched successfully on 2nd September 2020, joining technology demonstrator “Claire”, in orbit since 2016. ABB delivered the payload for “Hugo” (GHGSat-C2), GHGSat’s third satellite, which is scheduled to launch by the end of the year.

- Announcing the new agreement, Stephane Germain, CEO, GHGSat said: “With GHGSat-C2, ABB has proven that they have the technical expertise and manufacturing capacity to support GHGSat’s growth. We are looking forward to this next phase of our partnership with ABB to rapidly expand our constellation.”

- Marc Corriveau, General Manager ABB Measurement & Analytics Canada, commented: “We are currently seeing extensive innovation brought about by private initiatives in the space industry. At ABB we have built up a unique heritage in this sector over the decades helping scientists better understand the composition and evolution of our atmosphere. Our expertise in space optics and sensor development for industrial applications means that we are exceptionally well positioned to play a key role in GHGSat-C2. We are looking forward to collaborating on this exciting new project.”

GHGSat-C1/-C2 Satellite Platform

In order to expand satellite system capacity after the successful launch of its demonstration satellite, GHGSat started the design of two (2) additional high-resolution satellites in January 2017, called GHGSat-C1 and GHGSat-C2 ,respectively. GHGSat-C1/-C2 are intended to have similar designs to GHGSat-D, while applying critical lessons learned to improve performance. 8)

In March 2017, UTIAS/SFL (University of Toronto Institute for Aerospace Studies/Space Flight Laboratory) has been contracted by GHGSat Inc. of Montreal to develop the GHGSat-C1 and C2 greenhouse gas monitoring satellites. 9)

SFL has begun development of the GHGSat-C1 and C2 satellites at its Toronto facility with planned launches in late 2018 and early 2019, respectively. Serving as GHGSat’s first two commercially operating satellites, they will be identical to each other but contain incremental, yet significant, enhancements from the demonstration mission.

The design phase for two new, high-resolution satellites was completed in 2017. Changes made to the payload include (Ref. 8):

• Improved stray light / ghosting mitigation

• Addition of onboard calibration features

• Improved radiation mitigation

• Optimized spectroscopy for primary instrument

• Replacement of secondary instrument

• Addition of experimental optical downlink

Overall, GHGSat expects an order-of-magnitude performance improvement from this design, within the same volume, mass and power constraints of the demonstration satellite (Ref. 1).

The Next Generation Earth Monitoring and Observation (NEMO) platform is SFL’s first bus designed for microsatellite missions. This standard bus consists of two trays and six panels as seen in Figure 2. This supports a main payload mass of maximum 6 kg with an overall spacecraft mass ranging from 10-20 kg depending on secondary payloads and optional SFL avionics required to meet current and future missions. The GHGSat-C1 will have a mass of ~16 kg.

The nominal volume is 20 x 30 x 40 cm with a peak power between 50-100 W. Higher power is achieved through optional pre-deployed solar wings. The bus design supports a main payload of volume 8000 cm3 with a payload power of up to 45 W and 40% duty cycle.

The NEMO platform supports various ACS (Attitude Control Subsystem) sensors and actuators from sun sensors, magnetometer and rate sensors to magnetorquers and reaction wheels. This gives an ACS stability of approximately two degrees. When missions demands are higher, a star tracker can be used which increases ACS stability to about 10-60 arcseconds. The bus also supports GPS.

The typical NEMO platform uses an UHF uplink and S-band downlink. The standard uplink rate is 4 kbit/s with a downlink rate between 32 kbit/s and 2 Mbit/s. The platform can be further enhanced to use an S-band uplink.

Depending on deployed appendages, the NEMO platform is compatible with two SFL separation systems: the XPOD Duo and XPOD Delta. These separation systems are compatible with multiple launch vehicles.


Figure 2: GHGSat-D structure exploded view (image credit: UTIAS/SFL)

Improvements for GHGSat-C: The mechanical design of GHGSat-C1/-C2 has been constrained to match the design of GHGSat-D as closely as possible. Changes have been made due to upgrades in SFL hardware, updates to the primary payload, additions of new payloads, and to decrease the EMI sensitivity of the bus. The spacecraft exterior solid model is shown in Figure 3.


Figure 3: GHGSat-C1 exterior solid model (image credit: UTIAS/SFL)

SFL Hardware Upgrades: Several updates to the S-band transmitter have been implemented across all NEMO-class satellites to improve performance. Coaxial cables with improved shielding and filters between the transmitter and the antennas were added. These cables offer reduced insertion loss and, along with the higher powered S-band radio that has been baselined, will increase the transmit gain allowing for increases in data transfer using just S-band communications. These improvements have been proven during ground testing of other SFL spacecraft.

Firecode functionality has also been shifted from each individual onboard computer (OBC) to a separate firecode board, which interfaces with the radio and OBCs directly. This was done to further improve resilience to radiation-induced upsets. Additional upgrades to the OBC have been made but do not affect the mechanical interfaces within the bus.

A fourth reaction wheel has been added as a redundancy. It uses a skew orientation where it has control authority in all three of the principal spacecraft axes and thus can act as a backup. Figure 4 shows the four-wheel configuration.


Figure 4: Four reaction wheel configuration (image credit: UTIAS7SFL)

A permanent magnet has also been included to prevent an undesirable attitude where the payload face – one that has no solar panels – is locked in an attitude that faces the sun. This orientation would result in a power negative state until the satellite is commanded out of that attitude or environmental disturbances cause the satellite’s attitude to drift. The magnet was sized to impart a permanent dipole to the satellite which would interact with Earth’s magnetic field inducing a torque that would prevent it from getting stuck in that “sun-stare” attitude.

Addition of New Payloads: The addition of Darkstar has resulted in several changes to the GHGSat-C1/-C2 spacecraft. Mechanically speaking a new bracket needed to be designed to simultaneously ensure that the laser downlink had adequate line-of-sight to its ground station while maintaining a sufficient star tracker viewing angle to prevent impingement from the sun or Earth in nominal operations. A much larger cutout in the panel was required to accommodate this and a split panel design was implemented to facilitate both reducing the EMI sensitivity and ease of assembly as seen in Figure 5. By installing each part of the panel around Darkstar the actual size of the panel cutout was minimized reducing the effect of electromagnetic interference on the satellite avionics.


Figure 5: Split panel design to accommodate Darkstar (image credit: UTIAS/SFL)

Due to frequency conflicts between the Q8 processor high speed data transfer connection and other spacecraft components it was necessary to contain the board within an enclosure and shield the associated cabling to prevent undesired interferences. The addition of this payload posed some challenges because of extremely tight clearances especially with moving components such as the reaction wheels. The enclosure placement within the bus can be seen in Figure 6.


Figure 6: Q8 processor enclosure (image credit: UTIAS/SFL)

EMI (Electromagnetic Interference) Sensitivity Reduction: To further improve uplink sensitivity of the bus EMI gaskets were added to the primary spacecraft panels. Adjustments to the panel-to-panel and panel-to-tray interfaces were required to ensure there was sufficient material present for the gasket cutouts. Additionally, EMI gaskets were added to the UHF enclosure, as shown in Figure 7.


Figure 7: EMI gaskets for UHF (shown in red) and panel-tray (shown in green), image credit: UTIAS/SFL

Future Constellation Plans: The second and third GHGSat microsatellites will assure continuity of observations and will expand GHGSat’s customer capacity. More satellites will enable more frequent tracking of sites. GHGSat-C1/-C2 are the first two satellites in a planned constellation of GHG monitoring satellites.


Figure 8: Artist's rendition of the GHGSat-C1/-C2 on orbit (image credit: UTIAS/SFL, GHGSat)

Launches of GHGSat payloads

Launch: On May 25, 2022, GHGSat has successfully completed today at 2:27 p.m. EDT (18:27 UTC) the launch of three satellites, GHGSat-C3 (“Luca”), C4 (“Penny”) and C5 (“Diako”) aboard a SpaceX Falcon 9 rocket from Cape Canaveral Space Force Station. This new launch brings to six the total number of its satellites in space capable of monitoring GHG emissions. 10)

- This mission comes six years after the 2016 deployment of GHGSat’s first satellite, GHGSat-D (“Claire”), and marks on the same occasion, its fourth satellite launch. GHGSat is the only industry player in the world with satellites designed for high-resolution measurement of methane emissions from industrial sites. These measurements are critical for stakeholders globally to better understand their carbon footprint and take necessary action to reduce it. Thanks to its big data infrastructure, the Montréal-based company is capable of securely and efficiently process large volumes of data that it generates and transform it into valuable information products for its customers.

- Through this launch, GHGSat-C3 (“Luca”), C4 (“Penny”), and C5 (“Diako”)—affectionately named after the children of GHGSat team members—have successfully joined the company’s first three satellites in orbit, thereby doubling the size of a unique constellation which has been providing accurate methane emissions data since 2016 to industrial, governmental, and financial services customers. Thanks to the support received from the Canadian government at the COP26 climate change conference last fall, GHGSat is now also providing high-resolution methane emission data to the International Methane Emissions Observatory (IMEO) under the United Nations Environment Program (UNEP).

- “Satellite monitoring of greenhouse gas emissions is critical to the fight against climate change. GHGSat is continually enhancing its ability to provide all stakeholders with the most reliable and up-to-date data and insights on emissions worldwide. We have additional launches planned to bring our constellation to ten satellites by the end of 2023,” stated Stephane Germain, GHGSat CEO.

Launch: On January 24, 2021 at 15:00 UTC, the GHGSat-C2 (Hugo) nanosatellite (16 kg) of GHGSat (Montreal, Canada) was launched as a passenger payload on the Transporter-1 rideshare mission of SpaceX (with a total of 143 satellites). The Falcon 9 lifted off from Space Launch Complex 40 (SLC-40) at Cape Canaveral Space Force Station in Florida. Onboard were also 10 Starlink minisatellites of the SpaceX Starlink constellation. 11)

Orbit: SSO orbit of Rideshare mission: — SpaceX sent this mission with its 10 Starlink satellites into a polar SSO (Sun-Synchronous Orbit) with permission of the FCC (Federal Communications Commission). Altitude of 560 km and inclination of 97.6º 12)
The Falcon 9 rocket soared toward the southeast from the launch pad at Cape Canaveral, then vectored its thrust to fly on a coast-hugging trajectory toward South Florida, before flying over Cuba, the Caribbean Sea, and Central America. The unusual trajectory was similar to the track followed by a Falcon 9 launch in August 2020, which was the first launch since the 1960s from Florida’s Space Coast to head into a polar orbit.

Launch: The GHGSat-C1 (Iris) nanosatellite was launched as a passenger payload on Vega's rideshare service flight VV16, using the Small Spacecraft Mission Service (SSMS) dispenser for light satellites, launched from Europe’s Spaceport in Kourou, French Guiana at 01:51 UTC, 03:51 CEST on 3 September, 2020 (22:51 local time on 2 September in Kourou). 13)

Orbit: Sun-synchronous orbit; target orbit for the 7 microsatellites: altitude of 515 km, inclination of 97.45º; target orbit for the 46 nanosatellites: altitude of 530 km, inclination = 97.51º. The nominal mission duration (from liftoff to separation of the 53 satellites) is: 1 hour, 44 minutes and 56 seconds.

In April 2019, GHGSat announced that the firm's second satellite (namely GHGSat-C1) will be known as Iris — the naming follows a company tradition to name their satellites after the firm's team’s children as a symbol of the importance of its mission to future generations. Iris is expected to build on Claire’s success by making it possible to monitor even more sites, more frequently, at a fraction of the cost of other technologies. 14)

Passenger payloads (53) of the Vega rideshare mission VV16

Arianespace has realized the first European “rideshare” mission for small satellites, with 53 satellites onboard the Vega launcher for 21 customers from 13 different countries. With this new SSMS (Small Spacecraft Mission Service) shared launch concept, Arianespace demonstrates its ability to respond – in an innovative and competitive manner – to institutional and commercial requirements of the growing market for small satellites. The total satellite launch mass was 1,327 kg. 15)

With the demonstration of its new SSMS service, Arianespace is strengthening its position in the growing market for small satellites. This service will soon be supplemented by the MLS (Multi Launch Service) – a similar offer available on Ariane 6, allowing Arianespace to increase the number of affordable launch opportunities for small satellites and constellations.

• ESAIL is a maritime microsatellite with a mass of 112 kg for AIS (Automatic Identification System) ship tracking operated by exactEarth. Is was built by a European manufacturing team led by the satellite prime contractor Luxspace. ESAIL features an enhanced multiple antenna-receiver configuration for global detection of AIS messages and high-resolution spectrum capture, which will enable the demonstration of advanced future services such as VDES (VHF Data Exchange System) message reception. 16)

• Lemur-2, eight 3U CubeSats built by Spire Global Inc., San Francisco, CA . These satellites carry two payloads for meteorology and ship traffic tracking. The payloads are: STRATOS GPS radio occultation payload and the SENSE AIS payload.

• TriSat is a 3U CubeSat (5 kg) imaging mission led by the University of Maribor, Slovenia. The mission is focused on remote sensing by incorporating a miniaturized multispectral optical payload as the primary instrument, providing affordable multispectral Earth observation in up to 20 non-overlapping bands in NIR-SWIR (Near to Short Wave Infrared) spectrum.

• The launch integrator company Spaceflight Inc. of Seattle WA is providing its services for four different customers with a total of 28 satellites. These are:

a) NewSat-6 (also written as ÑuSat-6), is a low Earth orbit commercial remote sensing microsatellite (43.5 kg) designed and manufactured by Satellogic S.A. with HQs in Argentina, a vertically integrated geospatial analytics company that is building the first Earth observation platform with the ability to remap the entire planet at both high-frequency and high-resolution. This is Satellogic’s 11th spacecraft in orbit, equipped with multispectral and hyperspectral imaging capabilities and it will be added to the company’s growing satellite constellation.

b) 14 Flock-4v, 3U CubeSats, next-generation SuperDove satellites of Planet Inc., San Francisco, they will join its constellation of 150 Earth-imaging spacecraft.

c) SpaceBEE, 12 (.25U) picosatellites of Swarm Technology which provide affordable global connectivity.

d) Tyvak-0171, an undisclosed minisatellite of Tyvak, developed by Maxar with a mass of 138 kg.

• Planet Inc. of San Francisco launches a total of 26 Flock 4v SuperDoves on this mission. They will be split into two batches on the same launch: 14 of them will be housed inside and deployed from ISL’s QuadPack deployers and the remaining 12 will be deployed from D-Orbit’s InOrbit Now (ION) freeflying deployment platform. 17)

• Athena, a communications minisatellite mission (138 kg) of PointView Tech LLC, a subsidiary of Facebook. The objective is to provide broadband access (internet connectivity) to unserved and underserved areas throughout the world.

• AMICalSat, a 2U CubeSat, an educational mission, developed by CSUG (University of Grenoble Alpes, France) and MSU-SINP (Lomonosov Moscow State University-Skobeltsyn Institute of Nuclear Physics, Russia). The objective is to take pictures of the Northern light in order to reconstruct the particle precipitation into the polar atmosphere. The payload is a very compact, ultra-sensitive wide filed imager (f=23mm, aperture f/1.4). Firstly, AMICal Sat will observe auroras using nadir pointing, i.e. by determining the centre of the Earth to map and link the geographical position of the auroral oval and its internal structures with solar activity. Secondly, the cubesat will perform image capture ‘in limbo’ through tangential orientation with the Earth to capture the vertical profile of the auroras and match an altitude to their various emissions.

• PICASSO, a 3U CubeSat mission (mass of 3.8 kg) developed for ESA ( European Space Agency) led by BISA (Belgian Institute for Space Aeronomy), in collaboration with VTT Technical Research Center of Finland Ltd, Clyde Space Ltd. (UK) and the CSL (Centre Spatial de Liège), Belgium. The goal is to develop and operate a scientific 3U CubeSat.

• GHGSat-C1 of GHGSat Inc., Montreal, Canada, is the first of two nanosatellites (~16 kg) as the commercial follow-on to the GHGSat-D (CLAIRE) demonstration satellite developed and launched by UTIAS/SFL of Toronto in 2016. GHGSat monitors industries greenhouse gas (GHG) and air quality gas (AQG) emissions, including: oil & gas, power generation, mining, pulp & paper, pipelines (natural gas), landfill, chemicals, metals & aluminum, cement, agriculture, and transportation.

• NEMO-HD of SPACE-SI (Slovenian Center of Excellence for Space Sciences and Technologies) is a microsatellite (65 kg) developed at UTIAS/SFL of Toronto, Canada in cooperation with SPACE-SI. The NEMO-HD (Next-generation Earth Monitoring and Observation-High Definition) satellite is a high precision interactive remote sensing mission for acquiring multispectral images and real time HD video.

• FSSCat (Federated Satellite Systems on Cat) is the winner of the 2017 Copernicus Master “ESA Sentinel Small Satellite Challenge (S3)”. Proposed by the Universitat Politèctica de Catalunya (UPC) and developed by a consortium composed of UPC (ES), Deimos Engenharia (PT), Golbriak Space (EE), COSINE (NL) and Tyvak International (IT).

• Phi-Sat-1 (Φ-Sat-1) is the first on-board ESA initiative (6U CubeSat) on Artificial Intelligence (AI) promoted by the Φ Department of the Earth Observation Directorate and implemented as an enhancement of the FSSCat mission. Among mission objectives, scientific goals are Polar Ice and Snow monitoring, soil moisture monitoring, terrain classification and terrain change detection (i.e. hazard detection and monitoring, water quality), while technological goals are optical Inter-Satellite Link (OISL) demonstration.

• The RTAFSAT-1 (Royal Thai Air Force Satellite-1) mission, also referred to as NAPA-1, is a 6U CubeSat, the first remote sensing CubeSat mission for Thailand. The satellite will carry out an Earth Observation Demonstration mission with SCS Gecko Camera and Simera TriScape-100 payloads; the designed lifetime is 3 years.

• DIDO-3, a commercial 3U CubeSat mission of SpacePharma. The objective is to gather data by researching the effects of a microgravity environment on biological materials. SpacePharma from Israel will be is on board of SSMS POC with DIDO-3 Nanosatellite to perform biological experiment under Microgravity for several customers involved in pharmaceutical business, supported by Italian Space Agency (ASI) and Israeli Space Agency (ISA). Dido-3 will be monitored from the Ground Station developed by SpacePharma in Switzerland.

• SIMBA (Sun-Earth Imbalance), a 3U CubeSat mission led by the Royal Meteorological Institute Belgium, The objective is to measure the TSI (Total Solar Irradiance) and Earth Radiation Budget climate variables with a miniaturized radiometer instrument. This mission will help in the study of the global warming. This science mission will have a design lifetime of 3 years and the satellite performances will be monitored from ground station located in The Netherlands.

• TARS-1, a 6U CubeSat of Kepler Communications, developed at ÅAC Clyde Space for IoT (Internet of Things) applications. TARS-1 features deployable solar arrays, software defined radios (SDR), a narrowband communications payload and high gain antennas.

• OSM-1 Cicero, the first nanosatellite developed in Monaco by OSM (Orbital Solutions Monaco engineers, a 6U CubeSat with a mass of ~10 kg) based on the Tyvak Nano-Satellite Systems design. OSM plans to build nanosatellites to gather environment and climate data.

• TTU100, a 1U CubeSat developed at the Tallin University of Technology, Estonia. The objective is to test earth observation cameras and high-speed X-band communications. It will perform remote sensing in the visible and IR electromagnetic spectrum.

• UPMSat-2 (Universidad Politecnica de Madrid Satellite-2), a microsatellite (45 kg) of UPM.

Mission status

• June 15, 2022: On 14 January 2022, GHGSat, the world leader in high-resolution methane monitoring from space, detected the biggest emission from an individual facility it has ever seen: nearly 90 tonnes of methane (CH4) being released, every hour, from the Raspadskya Mine, in Kemerovo Oblast, Russia. 18)

- 13 distinct methane plumes were measured during a single satellite pass, ranging in size from 658 to 17,994 kg/h. If the total rate of release were sustained over the course of a year, the mine would emit 764,319 tonnes of methane - enough to power 2.4 m homes and equivalent to the CO2 produced by 5 average-sized coal-fired power stations. 19) Subsequent observations suggest the underground mine consistently expels large quantities of the gas, which has a climate-warming potential c.84 times greater than CO2 over 20 years.

- The releases may be safety-related. Methane is an unavoidable by-product of mining, with pockets of the gas released as seams are opened. In May 2010, 66 people were killed at Raspadskya, Russia’s largest mine, in an explosion and collapse caused by a build-up of methane within its 220 miles of tunnels. 20) GHGSat has alerted the mine’s operators to its findings.

- The scale of the Raspadskya emissions exceeds that of any previous, directly attributable ‘ultra emission’ event. In October 2015, the largest man-made methane release in US history occurred at an underground natural gas storage facility in Aliso Canyon, near Porter Ranch, Los Angeles. Estimates put the rate of release as high as 58 tons per hour3. The carbon footprint of the leak, which took four months to fix, was greater than that of the Deepwater Horizon disaster (Ref. 20).

- Three years later, GHGSat identified a malfunctioning oil well in Turkmenistan while on a scientific mission to find mud volcanoes. Between February 2018 and January 2019 this released c.142,000 tonnes of CH4. 21) Coverage of the event raised global awareness of the threat posed by human-made methane emissions.

- More recently, GHGSat was the first to definitively measure emissions from open cast coal mines from space, a source that has traditionally proven challenging to quantify. Their satellites recorded an open cast facility in Kazakhstan generating 54,000 kg/hr of the gas during passes in January and February this year.

- Central Asia was also cited as a major methane emitter in a paper published in February 2022, analyzing data collected by the Sentinel 5P satellite from 2019 - 20. The study identified regional ‘hot spots’ across North Africa, the Middle East and elsewhere, releasing up to 500 tonnes of methane per hour.

- GHGSat’s new observations build on this work and previous studies. Thanks to the unique, high-resolution instruments on board the company’s six satellites, which can image down to just 25 m x 25 m on the ground, researchers can now pinpoint the exact source of methane leaks. Emission rates too can be precisely measured, as the sensor’s accuracy has been validated in third-party blind experiments involving controlled releases of methane. This data can play a vital role in helping mine operators better understand their emissions and prioritize coal mine methane (CMM) capture projects.

• May 24, 2022: GHGSat, a leader in high-resolution greenhouse gas monitoring from space, has officially joined ESA’s prestigious Third Party Mission Programme. Announced today at the Living Planet Symposium currently taking place in Bonn, data from the company’s fleet of commercial satellites will be provided, free of charge, to researchers working in the fields of Earth science and climate change. Users will be able to access greenhouse gas measurements from sites all around the world. 22)

- Through ESA’s Third Party Missions Programme, ESA allows high quality data from a wide range of Earth observation satellite missions developed and operated by other agencies to be accessed to the wider scientific community. The programme, which has been operating for over 45 years, includes over 60 instruments on more than 50 space missions.

- Announcing GHGSat’s Third Party Mission Status, ESA’s Simonetta Cheli, Director of Earth Observation Programmes, said, “We are delighted to announce that our Member States have approved GHGSat’s membership to the Third Party Mission Programme.

- “It is fitting that we do this today, at our Living Planet Symposium: an event that sees scientists and researchers, from around the world, come together to discuss how space can help us monitor – and safeguard – the health and climate of our planet. GHGSat’s unique high-resolution imagery is a valuable addition to our portfolio and will be a great asset to all those studying human-made greenhouse gas emissions.”

- All five of GHGSat’s commercial satellites will be included in ESA’s Third Party Mission Programme, including Iris and Hugo, which are both currently in orbit, as well as Luca, Penny and Diako which are scheduled for launch later this week. Plans are in place to expand the fleet to 10 satellites by 2023.

- This Third Party Mission approval builds on the success of long-term data-sharing partnership where ESA, GHGSat and the Canadian Space Agency teamed up to provide 5% of data from its first commercial satellite, Iris, freely available for research purposes.


Figure 9: Announced today at the Living Planet Symposium taking place in Bonn, data from GHGSat’s fleet of commercial satellites will be provided, free of charge, to researchers working in the fields of Earth science and climate change as part of ESA’s Third Party Mission Programme. - From left to right: Eric Laliberté, Director General Space Utilization at the Canadian Space Agency, Peggy Fisher, Third Party Mission Manager at ESA, Adina Gillespie, Director of Business Development, Europe at GHGSat Inc, Marie-Josee Bourassa, Senior Advisor to the Director General, Earth Observation at Canadian Space Agency and Simonetta Cheli, Director of Earth Observation Programmes and Henri Laur, Head of Mission Management and Product Quality Division (image credit: ESA, JürgenMai)

- Given that methane emissions are a major factor in global warming, identifying the source of humanmade leaks has become a climate action policy with both ESA and GHGSat supporting the United Nations Environment Programme’s new International Methane Emissions Observatory announced at COP26 last year.

- Stephane Germain, CEO of GHGSat, added, “We greatly value our relationship with ESA and are thrilled at becoming an official Third Party Mission member. It is a tribute to the hard work of our teams and scientists, in Canada and around the world, that have helped create - and prove - the high-resolution technology that makes our data unique.

- “From the moment we had our first demonstration satellite in orbit, GHGSat has looked for ways to support climate science research, working with distinguished organisations such as Harvard and the Netherlands Institute for Space Research. Now, as part of ESA’s Third Party Mission family, we’re glad our data will be available to an even wider community.”

• May 2, 2022: On March 2nd, 2022, high-resolution satellites owned and operated by GHGSat, the environmental data company, detected methane (CH4) emissions coming from an agricultural area in California’s Joaquin Valley. Analysis later confirmed the source as being feedlots 6 miles (10 km) southeast of Bakersfield. This highlights the importance of tracking greenhouse gas emissions from cattle farming, and the ability to do so even from space. 23)

- Five emissions were recorded, ranging in size from 361 to 668 kg/h. If sustained for a year, this would result in 5,116 tonnes of gas being released - enough to power 15,402 homes. The observations were made by high-resolution satellites the size of microwave ovens, orbiting at an altitude of 500 km (300miles). GHGSat pioneered this technology, which can pinpoint the exact source of even small leaks.

- Agriculture is a major source of methane, a greenhouse gas 84 times more potent than CO2 over 20 years [ref]. Cattle farming (beef production) is responsible for 3.7% of all emissions, with the world’s 1.4 billion cows each burping up to 500 litres of CH4 per day, due to a digestive process known as ‘enteric fermentation’ [ref].

- Pollution from feedlots is a major issue. Used to quickly fatten cattle before slaughter, they are a common feature of beef production in Australia, Canada, the EU and the US. The largest may contain upwards of 120,000 animals at any one time. California’s 1.4m cows are the biggest source of dairy-related methane in the country, something the State is trying to address through legislation. In 2017, new rules came into effect targeting a 40% reduction in levels of methane and fluorinated gases in the atmosphere by 2030, compared with 2013 values.

- A variety of techniques to cut cow emissions are being tested, including adding small quantities of seaweed to their feed. Accurate emissions measurement is essential, however, for targets to be enforced and new practices to be adopted by the beef-production industry.

- Until now, practical solutions for measuring emissions have been elusive: ground-based monitoring is labour intensive, and can only scan small areas. Aircraft-mounted sensors can cover more ground, but also at a high cost. GHGSat has shown that satellites can monitor thousands of sites, every day, at a low cost and so support immediate climate action.

- GHGSat is the world leader in emissions monitoring from space, and the only organization – public or private – operating satellites designed for high-resolution greenhouse gas detection. It has been measuring methane emissions from hydropower, oil & gas, landfill and coal mining facilities since 2017, and its data is being provided to the United Nation’s IMEO programme (International Methane Emissions Observatory).

- In 2021, GHGSat proved that satellites could accurately measure methane emissions from open-pit coal mines. The company is currently developing world-first methodologies to check emissions from offshore energy production facilities and will also be expanding its investigation of agricultural methane sources to include sugar beet and sugar cane production, and dairy farming.

- GHGSat currently has three satellites in orbit with three more scheduled to launch this May with SpaceX.

• November 10, 2021: High-resolution satellites have detected substantial quantities of methane leaking from adjacent landfill sites close to the center of Madrid, Spain. Using data from the Copernicus Sentinel-5P mission combined with GHGSat’s high-resolution commercial imagery, scientists from the SRON Netherlands Institute for Space Research and GHGSat discovered both landfill sites combined emitted 8800 kg of methane per hour in August 2021 – the highest observed in Europe by GHGSat. 24)

- The area was originally identified based on methane hotspot mapping using TROPOMI data from the Copernicus Sentinel-5P satellite by researchers at SRON. The GHGSat team then used their satellites to spot methane plumes on 20 August and 13 October 2021, emanating from two landfill sites approximately six km apart, located just 18 km from the center of Madrid.

- The largest source released methane at a rate nearing 5000 kg per hour, with satellite imagery showing a cloud of greenhouse gas drifting towards nearby residences. The cause of the emissions is currently unknown, but data has been shared with the operator.

- The 1999 Landfill Directive requires EU landfill operators to capture gas created by the decomposition of organic material, and either use it for energy generation or burn it off through flaring. According to GHGSat estimations, approximately 350 000 homes could be powered with the methane loss rate of the Madrid landfills.


Figure 10: Photo of the Landfill site near Madrid, Spain (credit: Pixabay)


Figure 11: Methane emissions detected from Madrid landfill by by GHGSat. The image shows the methane emissions from one of the landfill sites in Madrid on 20 August 2021 (image credit: GHGSat)

- Studies now suggest that at least a quarter of human-induced global warming is due to methane, a greenhouse gas around 85 times more potent than carbon dioxide over 20 years. European policymakers have pledged to cut greenhouse gas emissions by 55%, from 1990 levels, by 2030. GHGSat’s observations were made just days after Madrid recorded its joint-highest ever temperature during a heatwave that scorched much of Southern Europe.

- According to the European Union Methane Strategy, published in October 2020, 26% of the continent’s methane emissions come from waste. Worldwide, landfills and dumpsites are predicted to account for 8 – 10% of all anthropogenic greenhouse gas emissions by 2025.

- Most landfills in Europe and the US are ‘sanitary’ and sealed off from the elements and surrounding environment. In countries across Asia, Africa and South America, however, waste typically ends up in dumpsites open to the elements. These can be around 200 hectares or more in size and receive in excess of 10,000 tons of waste per day. They are known sources of airborne pollution and water contamination.

- GHGSat’s satellites have observed landfills releasing large volumes of methane at locations across North America, Europe, Latin America and Asia. One site, near Jakarta, Indonesia, was measured emitting 15,900 kg per hour, equivalent to nearly 400,000 kg per hour of carbon dioxide.


Figure 12: Methane plumes were again observed at the Spanish landfill sites in October 2021. The GHGSat image shows the methane emissions from one of the landfill sites in Madrid on 13 October 2021 (image credit: GHGSat)

- Madrid is not alone in having dumps located close to habitations: in April 2021 GHGSat’s newest satellite, Hugo, recorded large quantities of methane (approximately 4000 kg per hour) coming from the 73-hectare Matuail Landfill in south Dhaka, Bangladesh – a city of nearly 22 million people.

- Measuring emissions consistently is a challenge for landfill operators and authorities. GHGSat and SRON work together to address the challenge by combining Tropomi data from the Copernicus Sentinel-5P satellite with GHGSat’s unique fleet of high-resolution satellites able to pinpoint the source of even small leaks.

- Previous results of the collaboration have included oil and gas operations in Turkmenistan, coal mines in China, as well as several other landfills. Ilse Aben from SRON comments: “This new finding again demonstrates the strong synergy between TROPOMI’s global coverage and high-resolution instruments like GHGSat and shows how we can spot methane emissions everywhere around the world including in Europe.”

- Stephane Germain, CEO of GHGSat said, “Thanks to our expanding fleet of satellites, we now provide data that would have been impractical and expensive to collect just a few years ago. With this information, operators and communities can build business cases for capturing landfill gas, providing new sources of revenue while mitigating their impact on climate. In addition, our data can help countries audit their climate impacts and more accurately monitor the progress of their Nationally Determined Contributions under the Paris Agreement.”

• July 8, 2021: Royal Dutch Shell Plc, Chevron Corp. and TotalEnergies SE are joining a satellite-based effort to track methane emissions from offshore oil and gas platforms. 25)

- The project will rely on observations from GHGSat Inc. satellites, which use infrared sensor technology to identify the potent greenhouse gas as it absorbs sunlight bouncing off the surface of the Earth. Tracking offshore emissions would fill a crucial gap in the effort to halt leaks because nearly 30% of the world’s oil and gas production is offshore.

- “Measuring offshore emissions properly is important: we need to improve the accuracy of the global methane stock take, replacing estimates with precise data,” GHGSat Chief Executive Officer Stéphane Germain said in a statement. “Offshore producers are looking for ways to confirm their reported emissions.”

- Halting methane emissions from the fossil fuel industry is viewed as some of the lowest hanging fruit in the fight against global warming because fugitive leaks are both wasted product and a source of reputational damage for operators. Methane, which is the primary component of natural gas but can also be released during coal and oil production, traps roughly 84 times more heat than carbon dioxide in the short term.

- Despite advances that have allowed for greater detection of onshore methane plumes through satellite observation, tracking offshore emissions has proven more difficult because water absorbs sunlight when viewed directly from above. GHGSat said its satellites would take measurements from more acute angles and focus on points where the sun’s light reflects most strongly off the sea -- known as the ‘glint spot.’

- TotalEnergies said in a statement that it would combine the satellite observations with local measurements from a drone-mounted spectrometer. The Paris-based energy company has been working with GHGSat since 2018 to detect and prevent methane leaks.

- The effort will “strengthen our position as a pioneer in developing methane emissions monitoring technologies,” TotalEnergies Chief Technology Officer Marie-Noëlle Séméria said in the statement.

- Each of the offshore project’s three industrial participants will have six of their facilities observed, which include assets in the North Sea and the Gulf of Mexico, according to GHGSat.

- In February, GHGSat satellites identified leaks from at least eight natural gas pipelines and unlit flares in Turkmenistan that Germain said could have lasted for several hours and would have the same planet-warming impact as 250,000 internal-combustion cars running for a similar amount of time.

• March 9, 2021: GHGSat has been named to Fast Company’s prestigious annual list of the World’s Most Innovative Companies for 2021. 26)

- The list honors companies that did more than survive in the last year, they thrived — making an impact on their industries and culture. GHGSat ranked top in this year’s MIC (Most Innovative Companies) list, which features 463 businesses from 29 countries.

- Stéphane Germain, CEO of GHGSat: “This recognition reflects the hard work of our innovative and passionate team, a team striving towards a common goal: to have a significant impact on climate change.”

- Today, GHGSat is the only Quebec Fast Company honoree renowned as a player in the field of “new space”, i.e., the exploitation of data from space. GHGSat has earned its place at the forefront of the fight against climate change, as a key supplier of reliable data and insights on greenhouse gas emissions.

- GHGSat launched its first high-resolution commercial satellite “Iris” in September of 2020. Less than 5 months later, GHGSat’s second commercial satellite, “Hugo”, was also launched. Each satellite is equipped with a state-of-the-art sensor that detects methane emissions from sources 100 times smaller than some satellites and can attribute emissions sources with 100 times higher precision than other commercial or state-funded satellites.

- The World’s Most Innovative Companies is Fast Company’s signature franchise and one of its most highly anticipated editorial efforts of the year. It provides both a snapshot and a road map for the future of innovation across the most dynamic sectors of the economy.

- “In a year of unprecedented challenges, the companies on this list exhibit fearlessness, ingenuity, and creativity in the face of crisis,” said Fast Company Deputy Editor David Lidsky, who oversaw the issue with Senior Editor Amy Farley.

- Fast Company’s Most Innovative Companies issue (March/April 2021) is now available online and on newsstands beginning March 16, 2021.

• February 3, 2021: GHGSat-C2 “Hugo”, the company’s third satellite, delivered its ‘first light image’ – the satellite’s first image of a methane plume. This key milestone was achieved in less than a week since launch on 24 January 2021. 27)


Figure 13: The new satellite detected a methane plume from an oil and gas facility while overflying Asia (image credit: GHGSat)


Figure 14: A day later, GHGSat tasked their second satellite “Iris”, equipped with the same, patented high-resolution instrument, to verify the data capture. Initial results indicate that Hugo has the same capability as Iris, “out of the box” (image credit: GHGSat)

- Hugo is equipped with a state-of-the-art sensor able to detect methane emissions sources 100 times smaller than some satellites, while also attributing emissions sources with 100 times higher precision than other satellites currently in orbit. By the end of 2022, the company will have a constellation of 10 emissions monitoring satellites, delivering data to commercial and governmental customers worldwide.

- Hugo launched as part of the Transporter-1 SpaceX mission aboard a Falcon 9 from Cape Canaveral Space Force Station at 10:00 EDT on 24 January 2021 – a rideshare that set a new world record for the largest number of satellites to be launched from a single rocket.

- Stéphane Germain, CEO of GHGSat, said: “The speed of this first methane observation is exceptional and we’re very proud to have Hugo detecting emissions within its first week in orbit.”

• January 24, 2021: GHGSat has successfully completed the launch of its third satellite, GHGSat-C2 ("Hugo"), which launched aboard a SpaceX Falcon 9 rideshare mission from Cape Canaveral Space Force Station at 10:00 ET / 15:00 UTC on January 24th, 2021. 28)

a) GHGSat-C2 ("Hugo") successfully separated from SpaceX rocket

b) Follows launch of GHGSat's second satellite, "Iris" on September 2nd, 2020

c) Hugo is the result of GHGSat's first collaboration with international leader in technology, ABB Measurement & Analytics Canada.

- Hugo is the second of a fleet of 10 commercial, high-resolution satellites due to be in orbit by the end of 2022. Each satellite is equipped with a state-of-the-art sensor that detects methane emissions from sources 100 times smaller, at a resolution that is 100 times higher, than any other commercial or state-funded satellite. Iris has already detected and quantified smaller plumes than GHGSat-D ("Claire") for industries such as oil & gas, waste management, and mining.

- Stephane Germain, CEO of GHGSat: "Hugo's successful launch doubles our commercial capacity in orbit for performing high-resolution measurements of facility-level emissions. This launch starts the year on a high note as the next step in deploying our constellation."

- Three more GHGSat satellites are currently being manufactured, and each will include patented GHGSat sensors manufactured under contract by ABB Measurement & Analytics Canada. Marc Corriveau, General Manager ABB Measurement & Analytics Canada said: "ABB is very pleased to support the rapid launch of Hugo, following the delivery of the first of many payload replicas under manufacturing. Experience gained in high-profile space programs like JPSS, Meteosat, MetOp, GOSAT and SciSat allowed us to refine the unique GHGSat technology. These complementary missions are essential to better understand our planet and carry us into a sustainable future."

• October 21, 2020: Today, GHGSat launches PULSE, a unique digital map showing methane (CH4) concentrations in Earth’s atmosphere, worldwide. The free-to-use online resource combines data from GHGSat’s own satellites, the only ones able to measure methane in high-resolution, with information from other sources such as the European Space Agency’s Sentinel-5P spacecraft. 29)

- PULSE shows monthly methane concentrations averages, updated weekly, on a grid averaging 2 km x 2 km over land. A slider function lets users explore how gas levels change over time, with the facility to track back, up to six months.


Figure 15: The new map is intended to raise awareness of, and support discussion about, this potent greenhouse gas by showing spatial and temporal patterns of methane, around the world. For example, the map shows how concentrations of CH4 grow in Greenland, Finland and Russia during the Arctic summer; how the Dolomite Mountains traps the gas in Italy’s Po Valley and how levels remain consistently high throughout the year over the Permian Basin, the epicenter of US oil and gas production (image credit: GHGSat)

- Carbon dioxide’s role in climate change is well documented but methane has, until recently, escaped the same scrutiny. Concentrations of CH4 in the atmosphere are increasing. Invisible to the naked eye, it has a global warming potential around 84 times greater than CO2, over 20 years, and accounts for about a quarter of all man-made global warming.

- This new resource shows concentrations that result from both the emission (release) and transport (movement in the atmosphere due to winds and chemical processes) of methane. Methane is produced by natural processes, such as the decay of vegetation in wetlands but a significant proportion (c. 60%) is attributable to human activity, with energy production, agriculture and waste management (landfills and dumpsites) all being major sources.

- PULSE is not designed to identify specific methane emitters. However, to support industry and governments to reduce emissions, GHGSat offers a range of commercial services including hotspot detection, predictive analysis and 25m resolution imagery to identify sources.

- GHGSat announced the map at the World Economic Forum (WEF) Annual Meeting in Davos in January 2020, where GHGSat was invited to participate as a WEF Technology Pioneer. The map was promised as a contribution to COP26 discussions, an opportunity for GHGSat to share its greenhouse gas expertise and data for free to help tackle climate change.

- Stephane Germain, CEO, GHGSat said: “PULSE represents the new state of the art when it comes to visualizing methane. Our day job is to monitor emissions for industry and governments around the world, using a growing fleet of satellite and aircraft sensors, and supported by powerful, proprietary analytics. We have drawn on all these capabilities in the design of PULSE, which will become an ever more important resource for all.

- “This first iteration of PULSE is only the beginning. We are already pushing ahead with an advanced version that will map, not just concentrations, but also emissions – globally, on the same grid and with an even higher frequency. This matters because concentrations tell us how much gas there already is in the atmosphere: emissions reveal the rate at which methane is being added. Knowing this allows for the continuous quantification of gas emissions inventories, at any geographic scale (local, province, state or national).”

- The interactive map is one of several initiatives by GHGSat to make data openly available. The company recently announced that 5% of its data from its second satellite, GHGSat-C1 “Iris” is being made available to the scientific community through an ‘Announcement of Opportunity’ with the European Space Agency (ESA) and the Canadian Space Agency. GHGSat data is also being assessed for inclusion in the ESA Third Party Mission program which sponsors the cost of access to satellite data for research and earth observation purposes, enabling the scientific community to develop applications.

• October 8, 2020: GHGSat, the global leader in high resolution greenhouse gas monitoring from space, today announced the first results from its latest satellite GHGSat-C1 (“Iris”), which already indicates performance 5 times better than its predecessor. 30)

- Launched into LEO on 3 September 2020, “Iris” was tasked with measuring a controlled release of methane from a facility in Alberta, Canada. Ground measurements of the controlled release confirmed an emission rate of 260 kg CH4/hr, comparable to the emissions from a large landfill. The satellite successfully detected the controlled release, less than two weeks after launch.

- An aircraft fitted with the same, patented GHGSat high-resolution sensor was flown at the same time over the site providing further data to validate the satellite measurement.

- Stephane Germain, GHGSat CEO, said: “We are delighted by these first results and by how quickly we were able to confirm them. We knew Iris would be good, because we incorporated everything we had learned from our demonstration satellite, ‘Claire’, in orbit over the past four years.


Figure 16: This image was taken on 15 September 2020, by GHGSat’s second satellite Iris. The spacecraft was tasked with measuring a controlled release of methane from a facility in Alberta, Canada. Ground measurements of the controlled release confirmed an emission rate of 260 kg CH4/hr. Iris maps plumes of methane in the atmosphere down to 25 m on the ground, detecting and measuring emissions from point sources 100 times smaller than any comparable system with a resolution 100 times higher, comparable to the emissions from a large landfill. GHGSat Inc. created the sample image by colorizing the methane concentration measurements that exceeded normal background levels captured over the Alberta test site. The colorized measurements are overlaid on an aerial photograph to provide context (image credit: GHGSat)

- “Satellites are complex devices and it takes time to fully characterize instruments and optimize processing software to filter out noise from the signal. We have just begun that process with Iris. We expect Iris to attain 10 times better performance than Claire and are now even more confident that we will validate that performance in the coming weeks.

- “While other organizations aspire to use satellites to monitor methane emissions at high resolution, they remain years away from launching their first satellites. Now Iris has raised the bar even higher.

- “These first results, advancing the state of the art in satellite monitoring of methane, are a testament to the great work done by our technical teams and our manufacturing partners. We are excited to deliver new insights for our customers using this expanded capability.”

- Iris is the first of a new constellation of high-resolution satellites: the next, Hugo is scheduled to launch later this year, with a further 9 due to be in orbit by the end of 2022. Each new satellite will feature GHGSat’s unique sensing technology which is able to detect methane emissions from sources 100 times smaller than any other satellite, but with a resolution 100 times higher. That means GHGSat can detect and quantify methane emissions from point sources as small as oil & gas wells. No other commercial operator or state-funded space organization can do this.

Sensor complement (WAF-P, C&A, Optical Downlink)

WAF-P (Wide-Angle Fabry-Perot) imaging spectrometer

The Imaging Spectrometer, operating in the SWIR (Short-Wave Infrared) region, is based on a Fabry-Perot (FP) interferometer. The optical design of the instrument includes three lens groups, in addition to the Fabry-Perot interferometer, as well as beam folding mirrors required to fit the telescope within a microsatellite bus. The payload avionics includes a Q7 hybrid processor provided by Xiphos Systems Corporation.

GHGSat-D flew the first iteration of this payload, shown in Figure 17. Each target observation produces approximately 200,000 measurements of the atmospheric radiance in the SWIR region.


Figure 17: Photo of the GHGSat-D fully integrated payload (image credit: GHGSat)

Several changes were made to the payload for GHGSat-C1/-C2 to improve upon the performance of GHGSat-D. These include upgrades to further mitigate stray light, ghosting, spectral bandpass inefficiencies, and radiation effects.

Stray light is extra light observed by the optical payload which was not intended to be observed. During nominal satellite operations, it was determined that up to 5% stray light was encountered on GHGSat-D with much of that being from off-axis incoming light. To improve upon this, several elements of the optical system were redesigned.

Ghosting is rotated, reflected, zoomed, or translated copies of the intended image. To improve upon this, anti-reflective (AR) coatings were either updated or newly applied to various surfaces in the optical system.

The GHGSat-D payload restricted the incident spectral passband to a wavelength region between 1600-1700 nm, which was selected for the presence of spectral features of methane and carbon dioxide, as well as relatively little interference from other atmospheric species. However, attempting to capture both methane and carbon dioxide lines proved to be inefficient. Therefore, the passband was narrowed in order to focus on methane.

Radiation in the space environment affected the detector. To help increase the lifetime of the detector radiation shielding was introduced around the IR camera for GHGSat-C1/-C2.

C&A (Clouds & Aerosol) camera

GHGSat-D also had a cloud and aerosol camera secondary payload, which ultimately did not contribute significantly to the mission. Therefore it was replaced with a visible light auxiliary camera, providing higher resolution imagery to improve image alignment and georeferencing.

The C&A measures interference from clouds and aerosols in the field of view of the WAF-P.

Some high-level specifications:

- The WAF-P measures vertical column densities of CO2 and CH4.

- The WAF-P spectral range is in the short-wave infrared (SWIR) at 1600-1700 nm, with multiple bands in a proprietary configuration.

- The C&A spectral range is in the visible and near-infrared (VNIR) at 400-1000 nm, with 325 bands at 1.9 nm spectral resolution.

Darkstar (Experimental Optical Downlink)

The downlink is currently the system bottleneck, given that the payload can generate data faster than it can be downlinked to the ground. GHGSat-D, along with GHGSat-C1/-C2, have an S-band transmitter for downlinking payload data and satellite bus telemetry. This system can achieve downlink rates of up to 2 Mbit/s. GHGSat-C1/-C2 are therefore testing an experimental laser downlink system that is intended to achieve downlink rates of up to 1 Gbit/s. Designed by Sinclair Interplanetary, the wavelength of the laser is785 nm, in the near-IR range.

The optical downlink is built on the reverse side of the optical bench of an expanded Sinclair Interplanetary ST-16RT2 star tracker, shown in Figure 18. Its mass is less than 400 g and its outer dimensions are 100 x 68 x 68 mm.

Darkstar interfaces with a Q8 processor designed by Xiphos Systems Corporation. The Q8 processor is a new design and is also included on GHGSat-C1 in order to gain flight heritage. The Q8 is connected to the payload avionics via an Ethernet connection for high speed data transfer. Although the primary means of downlinking payload data will still be over the S-band transmitter, the connection between the Q8 and the payload avionics exists in order to test and characterize the optical downlink system with the large volume of data generated by the main payload.


Figure 18: Darkstar internal space terminal layout (image credit: Sinclair Interplanetary) 31)

1) Laura M. Bradbury, Michael Ligori, Robert Spina, Daniel Kekez, Pawel Lukaszynski, Robert E. Zee, Stephane Germain, ”On-Orbit Greenhouse Gas Detection with the GHGSat Constellation,” Proceedings of the 69th IAC (International Astronautical Congress) Bremen, Germany, 1-5 October 2018, paper: IAC-18.B4.4.8

2) Stephane Germain, Berke Durak, Jason McKeever, Vincent Latendresse, Cordell Grant, James J. Sloan, ”Global Monitoring of Greenhouse Gas Emissions,” Proceedings of the 30th Annual AIAA/USU SmallSat Conference, Logan UT, USA, August 6-11, 2016, paper: SSC16-III-11, URL:

3) ”Canada's 7th National Communication and 3rd Biennial Report,” Gatineau, QC: Environment and Climate Change Canada, 2017, URL:

4) Jeff Foust, ”GHGSat to launch three spacecraft on Falcon 9,” SpaceNews, 8 December 2021, URL:

5) ”GHGSat confirms launch of its next three satellites with SpaceX,” GHGSat Press Release, 8 December 2021, URL:

6) ”Space Flight Laboratory (SFL) Awarded Contract by GHGSat Inc. to Build Three More Greenhouse Gas Monitoring Microsatellites,” UTIAS/SFL, 16 November 2020, URL:

7) ”GHGSat Signs with ABB to Deliver Payloads for Growing Constellation,” GHGSat Press Release, 6 October 2020, URL:

8) ”GHGSat-C1/C2,” GHGSat, January 2017, URL:

9) ”Space Flight Laboratory (SFL) to Develop Microsatellites for Greenhouse Gas Monitoring,” UTIAS/SFL, 24 March 2017, URL:

10) ”Greenhouse Gas Monitoring from Space: GHGSat Launches Three New Satellites with SpaceX,” GHGSat, Press Release, 25 May 2022, URL:

11) Jeff Foust, ”SpaceX launches record-setting cluster of smallsats,” SpaceNews, 24 January 2021, URL:

12) Jeff Foust, ”FCC grants permission for polar launch of Starlink satellites,” SpaceNews, 9 January 2021, URL:

13) ”Vega return to flight proves new rideshare service,” ESA Enabling & Support, 3 September 2020, URL:

14) ”GHGSat's Second Satellite Named and to Launch in August,” Satnews Daily, 4 April 2019, URL:

15) ”With Vega, Arianespace successfully performs the first European mission to launch multiple small satellites,” Arianespace Press Release, 3 September 2020, URL:

16) ”Vega flight VV16,” Wikipedia, URL:

17) Mike Safyan, ”Planet’s First Launch of 2020: 26 SuperDoves on a Vega,” Planet, 13 February 2020, URL:

18) ”Russian mine produces biggest methane leak ever seen by GHGSat,” GHGSat Press Release, 15 June 2022, URL:

19) Methane emission equivalencies:

20) Raspadskya Mine Explosion:

21) Turkmenistan event:

22) ”GHGSat joins ESA’s Third Party Mission Programme,” ESA Applications, 24 May 2022, URL:

23) ”Cow burps seen from space,” GHGSat Press Release, 2 May 2022, URL:

24) ”Satellites detect large methane emissions from Madrid landfills,” ESA Applications, 10 November 2021, URL:

25) Aaron Clark, ”Shell, TotalEnergies Join Satellite Effort to Track Methane,” Bloomberg News, 8 July 2021, URL:

26) ”Montreal-based emissions monitoring company among top-ranked in the Space category,” GHGSat Press Release, 9 March 2021, URL:

27) ”Hugo delivers first methane plume image,” GHGSat Press Release, 3 February 2021, URL:

28) ”GHGSat Satellite ''Hugo'' - Rideshare Launch with SpaceX a Success,” PR Newswire, 24 January 2021, URL:

29) ”GHGSat launches PULSE – a free and unique high-resolution methane map,” GHGSat Press Release, 21 October 2020, URL:

30) ”Smallest Methane Emission Ever Detected by Satellite,” GHGSat Press Release, 8 October 2020, URL:

31) Doug Sinclair, Kathleen Riesing, ”The Rainbow Connection -Why Now is the Time for SmallSat Optical Downlinks,” Proceedings of the 31st Annual AIAA/USU Conference on Small Satellites, Logan UT, USA, Aug. 5-10, 2017, paper: SSC17-II-06, URL:

The information compiled and edited in this article was provided by Herbert J. Kramer from his documentation of: ”Observation of the Earth and Its Environment: Survey of Missions and Sensors” (Springer Verlag) as well as many other sources after the publication of the 4th edition in 2002. - Comments and corrections to this article are always welcome for further updates (

Spacecraft    Launch    Mission Status     Sensor Complement    References    Back to top