Minimize Technologies and Applications

Technologies and Applications

This file is intended to present some technology topics that cannot be assigned to a particular mission. The following chapters contain only short descriptions, they are presented in reverse order. The topics should be of interest to the reader community.


    Integrated photonics meet electron microscopy
Scientists demonstrate a novel rocket for deep-space exploration Optimum Pressure to Improve the Performance of Lithium Metal Batteries Fundamental particles modelled in beam of light
Pivotal Discovery of Nanomaterial for LEDs Lockheed Martin Invents New Satellite Dish Technology Complex shapes of photons to boost future quantum technologies
A revolutionary method to drastically reduce stray light on space telescopes Graphene sensor combines temperature and magnetic measurements Wearable Sensors that Detect Gas Leaks
Atom interferometry demonstrated in space for the first time Energy Storage Technology Move over plastic: desktop 3D
printing in metal or ceramics
Shape-shifting mirror The most sensitive optical
receivers yet for space communications
Mesh reflector for shaped
radio beams - ESA's AMPER Project
Quantum technology: Simple mod
makes quantum states last 10,000 times longer
Photonics: From custom-built
to ready-made
Physicist creates fifth state
of matter from their living room
Scientists use light to
accelerate supercurrents, access
forbidden light, quantum properties
Ultra-thin sail could speed
journey to other star systems
Lighting material of the future
Smart chips for space Flexible, ultra-thin solar cell Satellite design applied
to superyacht
Controlling light with light Slow light to speed up
LiDAR sensors development
First plant-powered IoT
sensor sends signal to space
Skin-like sensors - wearable tech Water drop antenna lens Particle accelerator that fits on a chip
ESA helps industry for
5G innovation
Glowing solar cell Quantum light sources
pave the way for optical circuits
Driverless shuttle New Method Can Spot Failing
Infrastructure from Space
Atomic motion captured
in 4-D for the first time
SUN-to-LIQUID Melting satellites The mysterious crystal that melts
at two different temperatures
Mission Control 'Saves Science' Testing satellite marker designs Mirror array for LSS
Cold plasma tested on ISS 3D printing and milling Athena optic bench SmartSat architecture in spacecraft
Radiation tolerance of 2D
meterial-based devices
Better Solar Cells Converting Wi-Fi Signals to Electricity
Neonatal Intensive Care Units Introduction of 5G
communication connectivity
Unique 3D printed sensor technology
New Geodesy Application for Emerging Atom-Optics Technology Wireless transmission at 100 Gbit/s 3D printing one of the strongest materials on Earth
Prototype nuclear battery packs The Kilopower Project of NASA Top Tomatoes - Mars Missions
NEXT-C ion propulsion engine New dimension in design Lasers Probing the nano-scale

Integrated photonics meet electron microscopy

December 23, 2021: The transmission electron microscope (TEM) can image molecular structures at the atomic scale by using electrons instead of light, and has revolutionized materials science and structural biology. The past decade has seen a lot of interest in combining electron microscopy with optical excitations, trying, for example, to control and manipulate the electron beam by light. But a major challenge has been the rather weak interaction of propagating electrons with photons. 1)


Figure 1: A ring resonator. Scientists in Switzerland and Germany have achieved efficient electron-beam modulation using integrated photonics – circuits that guide light on a chip. The experiments could lead to entirely new quantum measurement schemes in electron microscopy (image credit: Alex Mehler)

- In a new study, researchers have successfully demonstrated extremely efficient electron beam modulation using integrated photonic microresonators. The study was led by Professor Tobias J. Kippenberg at EPFL, Lausanne, Switzerland, and by Professor Claus Ropers at the Max Planck Institute for Biophysical Chemistry and the University of Göttingen, and is published in Nature. 2)

- The two laboratories formed an unconventional collaboration, joining the usually unconnected fields of electron microscopy and integrated photonics. Photonic integrated circuits can guide light on a chip with ultra-low low losses, and enhance optical fields using micro-ring resonators. In the experiments conducted by Ropers’ group, an electron beam was steered through the optical near field of a photonic circuit, to allow the electrons to interact with the enhanced light. The researchers then probed the interaction by measuring the energy of electrons that had absorbed or emitted tens to hundreds of photon energies. The photonic chips were engineered by Kippenberg’s group, built in such a way that the speed of light in the micro-ring resonators exactly matched the speed of the electrons, drastically increasing the electron-photon interaction.


Figure 2: The experimental setup, showing a transmission electron microscope and silicon nitride microresonator used to demonstrate the electron-photon interaction (image credit: Murat Sivis)

- The technique enables a strong modulation of the electron beam, with only a few milli-Watts from a continuous wave laser – a power level generated by a common laser pointer. The approach constitutes a dramatic simplification and efficiency increase in the optical control of electron beams, which can be seamlessly implemented in a regular transmission electron microscope, and could make the scheme much more widely applicable.

- “Integrated photonics circuits based on low-loss silicon nitride have made tremendous progress and are intensively driving the progress of many emerging technologies and fundamental science such as LiDAR, telecommunication, and quantum computing, and now prove to be a new ingredient for electron beam manipulation,” says Kippenberg.

- “Interfacing electron microscopy with photonics has the potential to uniquely bridge atomic scale imaging with coherent spectroscopy,” adds Ropers. “For the future, we expect this to yield an unprecedented understanding and control of microscopic optical excitations.”

- The researchers plan to further extend their collaboration in the direction of new forms of quantum optics and attosecond metrology for free electrons.

- The silicon nitride samples were developed in the Center of MicroNanoTechnology (CMi) at EPFL. The experiments were conducted at the Göttingen Ultrafast Transmission Electron Microscopy (UTEM) Lab.


- Deutsche Forschungsgemeinschaft (DFG)

- Air Force Office of Scientific Research (AFOSR)

- Swiss National Science Foundation (SNF)

- European Union Horizon 2020 (EBEAM, SEPhiM)

Scientists at PPPL and Princeton University demonstrate a novel rocket for deep-space exploration

• December 22, 2021: The growing interest in deep-space exploration has sparked the need for powerful long-lived rocket systems to drive spacecraft through the cosmos. Scientists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have now developed a tiny modified version of a plasma-based propulsion system called a Hall thruster that both increases the lifetime of the rocket and produces high power. 3)

- The miniaturized system powered by plasma — the state of matter composed of free-floating electrons and atomic nuclei, or ions — measures little more than an inch in diameter and eliminates the walls around the plasma propellent to create innovative thruster configurations. Among these innovations are the cylindrical Hall thruster, first proposed and studied at PPPL, and a fully wall-less Hall thruster. Both configurations reduce channel erosion caused by plasma-wall interactions that limit the thruster lifetime – a key problem for conventional annular, or ring-shaped, Hall thrusters and especially for miniaturized low-power thrusters for applications on small satellites.

Widely studied

- Cylindrical Hall thrusters were invented by PPPL physicists Yevgeny Raitses and Nat Fisch in 1999 and have been studied with students on the Laboratory’s Hall Thruster Experiment (HTX) since then. The PPPL devices have also been studied in countries including Korea, Japan, China, Singapore, and the European Union, with Korea and Singapore considering plans to fly them.

- While wall-less Hall thrusters can minimize channel erosion, they face the problem of extensive widening, or divergence, of the plasma thrust plume, which degrades the system’s performance. To reduce this problem, PPPL has installed a key innovation on its new wall-less system in the form of a segmented electrode, a concentrically joined carrier of current. This innovation not only reduces the divergence and helps to intensify the rocket thrust, Raitses said, but also, suppresses the hiccups of small-size Hall thruster plasmas that interrupt the smooth delivery of power.

- The new findings cap a series of papers that Jacob Simmonds, a graduate student in the Princeton University Department of Mechanical and Aerospace Engineering, has published with Raitses, his doctoral co-adviser; PPPL physicist Masaaki Yamada serves as the other co-advisor. “In the last two years we have published three papers on new physics of plasma thrusters that led to the dynamic thruster described in this one,” said Raitses, who leads PPPL research on low-temperature plasma physics and the HTX. “It describes a novel effect that promises new developments in this field.”

- Application of segmented electrodes to Hall thrusters is not new. Raitses and Fisch had previously used such electrodes to control the plasma flow in conventional annular Hall thrusters. But the effect that Simmonds measured and described in the recent paper in Applied Physics Letters is much stronger and has greater impact on the overall thruster operation and performance. 4)


Figure 3: Graduate student Jacob Simmonds, center, with advisors Masaaki Yamada, left, and Yevgeny Raitses with figure of wall-less Hall thruster behind them. (Credit: Yamada and Raitses photos by Elle Starkman/Office of Communications; Simmonds photo by Tyler Boothe. Collage by Kiran Sudarsanan)

Focusing the plume

- The new device helps overcome the problem for wall-less Hall thrusters that allows the plasma propellant to shoot from the rocket at wide angles, contributing little to the rocket’s thrust. “In short, wall-less Hall thrusters while promising have an unfocused plume because of the lack of channel walls,” Simmonds said. “So we needed to figure out a way to focus the plume to increase the thrust and efficiency and make it a better overall thruster for spacecraft.”

- The segmented electrode diverts some electric current away from the thruster’s high-voltage standard electrode to shape the plasma and narrow and improve the focus of the plume. The electrode creates this effect by changing the directions of the forces within the plasma, particularly those on the ionized xenon plasma that the system accelerates to propel the rocket. Ionization turned the xenon gas the process used into free-standing electrons and atomic nuclei, or ions.

- These developments increased the density of the thrust by shaping more of it in a reduced volume, a key goal for Hall thrusters. An added benefit of the segmented electrode has been the reduction of plasma instabilities called breathing mode oscillations, “where the amount of plasma increases and decreases periodically as the ionization rate changes with time” Simmonds said. Surprisingly, he added, the segmented electrode caused these oscillations to go away. “Segmented electrodes are very useful for Hall thrusters for these reasons,” he said.

- The new high-thrust-density rocket can be especially beneficial for tiny cubic satellites, or CubeSats. Masaaki Yamada, Simmonds’ co-doctoral adviser who heads the Magnetic Reconnection Experiment (MRX) that studies the process behind solar flares, Northern lights and other space phenomena, proposed the use of a wall-less segmented electrode system to power a CubeSat. Simmonds and his team of undergraduate students working under the guidance of Prof. Daniel Marlow, the Evans Crawford 1911 Professor of Physics at Princeton, took up that proposal to develop a CubeSat and such a rocket — a project that was halted near completion by the COVID-19 pandemic and that could be resumed in the future.

Support for this work comes from the DOE Office of Science. — PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit

Researchers Determine Optimum Pressure to Improve the Performance of Lithium Metal Batteries

• December 1, 2021: A team of materials scientists and chemists has determined the proper stack pressure that lithium metal batteries (LMBs) need to be subjected to during battery operation in order to produce optimal performance. The team includes researchers from the University of California San Diego (UCSD), Michigan State University, Idaho National Laboratory, and the General Motors Research and Development Center. 5)


Figure 4: Top row: top view and cross sections of deposited lithium at 70 kPa. Bottom row: top view and cross sections of deposited lithium at 350 kPa. The higher pressure causes the lithium particles to deposit in neatly stacked columns, which increases the volume of lithium deposited and prevents porosity (image credit: UCSD)

- Using lithium metal to replace the graphite for battery anodes is the ultimate goal for part of the battery R&D field; these lithium-metal batteries (LMBs) have the potential to double the capacity of today’s best lithium-ion technologies. For example, lithium metal battery-powered electric vehicles would have twice the range of lithium-ion battery-powered vehicles, for the same battery weight.

- Despite this advantage over lithium-ion batteries, LMBs are not considered a viable option to power electric vehicles or electronics, because of their short lifespan and potential safety hazards, specifically short circuits caused by lithium dendrite growth. Researchers and technologists had noticed that subjecting LMBs to pressure during battery cycling increases performance and stability, helping to solve this lifespan challenge. But the reasons behind this were not fully understood.

- The researchers used several characterizations and imaging techniques to study LMB morphology and quantify performance when the batteries were subjected to different pressures. They found that higher pressure levels force lithium particles to deposit in neat columns, without any porous spaces in between. The pressure required to achieve this result is 350 kilo Pascals (roughly 3.5 atmospheres). By contrast, batteries subjected to lower levels of pressure are porous and lithium particles deposit in a disorderly fashion, leaving room for dendrites to grow. They also showed that the process doesn’t affect the solid electrolyte interphase (SEI) structure of the batteries’ electrolytes.

- Another way to boost performance is to not completely discharge the battery while it cycles. Instead, the researchers keep a reservoir of lithium where re-nucleation can occur. These findings were validated at the General Motors Research and Development Center in Michigan.

- Separately, researchers at Idaho National Laboratory used molecular dynamics simulations to understand the stack pressure range used in this work, which is much less than that expected based on macroscopic mechanical models.

Fundamental particles modelled in beam of light

• November 22, 2021: Scientists at the University of Birmingham (UK) have succeeded in creating an experimental model of an elusive kind of fundamental particle called a skyrmion in a beam of light. 6)

- The breakthrough provides physicists with a real system demonstrating the behaviour of skyrmions, first proposed 60 years ago by a University of Birmingham mathematical physicist, Professor Tony Skyrme.


Figure 5: Artist's sketch of the experimental setup (image credit: Nature Communications)

- Skyrme’s idea used the structure of spheres in 4-dimensional space to guarantee the indivisible nature of a skyrmion particle in 3 dimensions. 3D particle-like skyrmions are theorised to tell us about the early origins of the Universe, or about the physics of exotic materials or cold atoms. However, despite being investigated for over 50 years, 3D skyrmions have been seen very rarely in experiments. The most current research into skyrmions focuses on 2D analogues, which shows promise for new technologies.

- In a new study, published in Nature Communications, the international collaboration between researchers at the University of Birmingham, Lancaster, Münster (Germany) and RIKEN (Japan) has demonstrated for the first time how skyrmions can be measured in three dimensions. 7)

- Professor Mark Dennis, who led the research, said: “Skyrmions have intrigued and challenged physicists for many decades. Although we’re making good progress investigating skyrmions in 2D, we live in a 3D world. We need a system that can model a skyrmion in all its possible states in a way that could be measured. We realised that a beam of light could be harnessed for this purpose because we are able to closely control its properties, and so use it as a platform to model our skyrmions. With this approach, we can start to truly understand these objects and realise their scientific potential.”

- To create their model, Dr Danica Sugic and Professor Dennis, in the University’s School of Physics and Astronomy, cast the standard description of light, the polarisation (direction the in which the light waves travel) and phase (the position of the light waves’ vibration) in terms of a sphere in 4-dimensional space, crucial to Skyrme’s original vision. This then allowed the Skyrmion field to be designed and engineered into a beam of laser light in an experiment led by Professor Cornelia Denz, University of Münster. The team used cutting-edge measurements to determine the precise structure of the skyrmion.

- “These objects are actually quite intricate, from a geometric point of view,” said Dr Sugic. “They resemble a complex system of interlocking rings, with the whole forming a particle-like structure. What’s particularly interesting is the skyrmion’s topological properties – they can be distorted, stretched or squeezed, but will not come apart. This robustness is one of the properties that scientists are most interested in exploiting.”

Pivotal Discovery of Nanomaterial for LEDs

• September 24, 2021: Light emitting diodes (LEDs) are an unsung hero of the lighting industry. They run efficiently, give off little heat, and last for a long time. Now scientists are looking at new materials to make more efficient and longer-lived LEDs with applications in consumer electronics, medicine, and security. 8)


Figure 6: Light emitting diodes made from perovskite nanocrystals (green) embedded in a metal-organic framework can be created at low cost, use earth-abundant materials and remain stable under typical working conditions (image credit: Los Alamos National Laboratory)

- Researchers from the U.S. Department of Energy’s (DOE) Argonne National Laboratory, Brookhaven National Laboratory, Los Alamos National Laboratory and SLAC National Accelerator Laboratory report that they have prepared stable perovskite nanocrystals for such LEDs. Also contributing to the effort was Academia Sinica in Taiwan.

- Perovskites are a class of material that share a particular crystalline structure giving them light-absorbing and light-emitting properties that are useful in a range of energy-efficient applications, including solar cells and various kinds of detectors. Perovskite nanocrystals have been prime candidates as a new LED material but have proved unstable on testing. The research team stabilized the nanocrystals in a porous structure called a metal-organic framework, or MOF for short. Based on earth-abundant materials and fabricated at room temperature, these LEDs could one day enable lower cost TVs and consumer electronics, as well as better gamma-ray imaging devices and even self-powered X-ray detectors with applications in medicine, security scanning and scientific research.

- “We attacked the stability issue of perovskite materials by encapsulating them in MOF structures,” said Xuedan Ma, scientist in Argonne’s Center for Nanoscale Materials (CNM), a DOE Office of Science User Facility. “Our studies showed that this approach allows us to enhance the brightness and stability of the light-emitting nanocrystals substantially.”

- Hsinhan Tsai, a former J. R. Oppenheimer postdoc fellow at Los Alamos, added that, “The intriguing concept of combining perovskite nanocrystal in MOF had been demonstrated in powder form, but this is the first time we successfully integrated it as the emission layer in an LED.”

- Previous attempts to create nanocrystal LEDs were thwarted by the nanocrystals degrading back to the unwanted bulk phase, losing their nanocrystal advantages and undermining their potential as practical LEDs. Bulk materials consist of billions of atoms. Materials such as perovskites in the nano phase are made of groupings of just a few to a few thousand atoms, and thus behave differently.

- In their novel approach, the research team stabilized the nanocrystals by fabricating them within the matrix of a MOF, like tennis balls caught in a chain-link fence. They used lead nodes in the framework as the metal precursor and halide salts as the organic material. The solution of halide salts contains methylammonium bromide, which reacts with lead in the framework to assemble nanocrystals around the lead core trapped in the matrix. The matrix keeps the nanocrystals separated, so they don’t interact and degrade. This method is based on a solution coating approach, far less expensive than the vacuum processing used to create the inorganic LEDs in wide use today. The MOF-stabilized LEDs can be fabricated to create bright red, blue and green light, along with varying shades of each.

- The research team used the Advanced Photon Source (APS), a DOE Office of Science User Facility at Argonne, to perform time-resolved X-ray absorption spectroscopy, a technique that allowed them to spot the changes in the perovskite material over time. Researchers were able to track electrical charges as they moved through the material and learned important information about what happens when light is emitted.

- In durability tests, the material performed well under ultraviolet radiation, in heat and in an electrical field without degrading and losing its light-detecting and light-emitting efficiency, a key condition for practical applications such as TVs and radiation detectors.

Lockheed Martin Invents New Satellite Dish Technology

• August 23, 2021: Lockheed Martin has invented a new type of satellite dish technology with a wide range of use on satellites and ground terminals, including space-based 5G. The Wide Angle ESA Fed Reflector (WAEFR) antenna is a hybrid of a phased array Electronically Steerable Antenna (ESA) and a parabolic dish and increases coverage area by 190 percent when compared to traditional phased array antennas at a much lower cost. 9)


Figure 7: Photo of the Lockheed Martin WAFER antenna (image credit: Lockheed Martin)

- This antenna is part of a larger research and development investment in 5G.MIL™ technologies that will optimize and securely connect warfighting platforms to enable joint all-domain command and control (JADC2). Lockheed Martin is uniquely positioned, leveraging commercial best practices, strong partnerships, a broad supply chain and leadership expertise, to bring 5G connectivity and capabilities to the defense community rapidly and affordably.

- “We adopted a commercial mindset to quickly mature this technology and discovered there were multiple use cases and applications that could benefit from this new hybrid antenna,” said Chris Herring, vice president of advanced program development at Lockheed Martin Space. “5G.MIL technologies like this will bring greater connectivity, faster and more reliable networks, and new data capabilities to support our customers as they navigate the complexity of 21st century battlefields.”

- The team rapidly prototyped, tested and validated this system in a matter of months compared to what previously took years. WAEFR also features:

a) High performance gain of a dish with the beam agility of an ESA

b) Low Size Weight and Power (SWAP) common product solution to accommodate any orbital altitude or ground terminal application

c) Advances in 3D-printing technology and accelerated parts production.

- This type of antenna will also benefit the broader communications and ISR communities by providing a more reliable scanning solution compared to gimbaled designs.

- “The primary benefit of the WAEFR approach is accomplishing more mission with fewer resources,” said Thomas Hand, Ph.D., associate technical fellow at Lockheed Martin Space. “While state of the art ESA solutions can address more demanding link performance, capacity, and data rates using multiple agile analog beams, they do so at a premium.”

Figure 8: Space is the ultimate high-ground and 5G, artificial intelligence, and rapid technology insertion will all empower joint all-domain operations – which will help counter the rising threats we face today and tomorrow (video credit: Lockheed Martin)

Complex shapes of photons to boost future quantum technologies

• June 6, 2021: As the digital revolution has now become mainstream, quantum computing and quantum communication are rising in the consciousness of the field. The enhanced measurement technologies enabled by quantum phenomena, and the possibility of scientific progress using new methods, are of particular interest to researchers around the world. 10)

- Recently two researchers at Tampere University, Assistant Professor Robert Fickler and Doctoral Researcher Markus Hiekkamaki, demonstrated that two-photon interference can be controlled in a near-perfect way using the spatial shape of the photon. Their findings were recently published in the prestigious journal Physical Review Letters. 11)


Figure 9: Conceptual image of the used method for manipulating the spatial structures of photons using multiple consecutive lossless modulations (image credit: Markus Hiekkamäki, Tampere University)

- "Our report shows how a complex light-shaping method can be used to make two quanta of light interfere with each other in a novel and easily tuneable way", explains Markus Hiekkamaki.

- Single photons (units of light) can have highly complex shapes that are known to be beneficial for quantum technologies such as quantum cryptography, super-sensitive measurements, or quantum-enhanced computational tasks. To make use of these so-called structured photons, it is crucial to make them interfere with other photons.

- "One crucial task in essentially all quantum technological applications is improving the ability to manipulate quantum states in a more complex and reliable way. In photonic quantum technologies, this task involves changing the properties of a single photon as well as interfering multiple photons with each other;" says Robert Fickler, who leads the Experimental Quantum Optics group at the university.

Linear optics bring promising solutions to quantum communications

- The demonstrated development is especially interesting from the point of view of high-dimensional quantum information science, where more than a single bit of quantum information is used per carrier. These more complex quantum states not only allow the encoding of more information onto a single photon but are also known to be more noise-resistant in various settings.

- The method presented by the research duo holds promise for building new types of linear optical networks. This paves the way for novel schemes of photonic quantum-enhanced computing.

- "Our experimental demonstration of bunching two photons into multiple complex spatial shapes is a crucial next step for applying structured photons to various quantum metrological and informational tasks", continues Markus Hiekkamaki.

- The researchers now aim at utilizing the method for developing new quantum-enhanced sensing techniques, while exploring more complex spatial structures of photons and developing new approaches for computational systems using quantum states.

- "We hope that these results inspire more research into the fundamental limits of photon shaping. Our findings might also trigger the development of new quantum technologies, e.g. improved noise-tolerant quantum communication or innovative quantum computation schemes, that benefit from such high-dimensional photonic quantum states", adds Robert Fickler.

A revolutionary method to drastically reduce stray light on space telescopes

• May 19, 2021: A team of researchers at the Centre Spatial de Liège (CSL) of the University of Liège in Belgium has just developed a method to identify the contributors and origins of stray light on space telescopes. This is a major advance in the field of space engineering that will help in the acquisition of even finer space images and the development of increasingly efficient space instruments. This study has just been published in the journal Scientific Reports. 12) 13)

Space telescopes are becoming more and more powerful. Technological developments in recent years have made it possible, for example, to observe objects further and further into the universe or to measure the composition of the Earth's atmosphere with ever greater precision. However, there is still one factor limiting the performance of these telescopes: stray light. A phenomenon that has been known fora long time, stray light results in light reflections (ghost reflections between lenses, scattering, etc.) that damage the quality of images and often lead to blurred images. Until now, the methods for checking and characterizing this stray light during the development phase of the telescopes have been very limited, making it possible to "just" know whether or not the instrument was sensitive to the phenomenon, forcing engineers to revise all their calculations in positive cases, leading to considerable delays in the commissioning of these advanced tools.

Researchers at the Centre Spatial de Liège (CSL), in collaboration with the University of Strasbourg, have just developed a revolutionary method for solving this problem by using a femto-second pulsed laser to send light beams to illuminate the telescope. "Stray light rays take (in the telescope) different optical paths from the rays that form the image," explains Lionel Clermont, an expert in space optical systems and stray light at CSL. Thanks to this, and using an ultra-fast detector (of the order of 10-9 seconds of resolution, i.e. a thousandth of a millionth of a second), we are measuring the image and the different stray light effects at different times. In addition to this decomposition, we can identify each of the contributors using their arrival times, which are directly related to the optical path, and thus know the origin of the problem." The CSL engineers have now demonstrated the effectiveness of this method in a paper, just published in the journal Scientific Reports, in which they present the first film showing ghost reflections in a refractive telescope arriving at different times. "We have also been able to use these measurements to reverse engineer theoretical models," says Lionel Clermont, "which will make it possible, for example, to build better image processing models in the future." By correlating these measurements with numerical models, the scientists will now be able to determine precisely the origin of the stray light and thus act accordingly to improve the system, both by improving the hardware and with the development of correction algorithms.

More than just a scientific curiosity, this method developed at the CSL could well lead to a small revolution in the field of high-performance space instruments. "We have already received a great deal of interest from the ESA (European Space Agency) and from industrialists in the space sector," says Marc Georges, an expert in metrology and lasers at CSL and co-author of the study. This method responds to an urgent problem that has been unresolved until now." In the near future, CSL researchers intend to continue the development of this method, to increase its TRL (Technology Readiness Level) and bring it to an industrial level. An industrial application is already planned for the FLEX (Fluorescence Explorer) project, an earth observation telescope that is part of ESA's Living Planet Program. The researchers hope to be able to apply it to scientific instruments as well.

Graphene sensor combines temperature and magnetic measurements

• May 18, 2021: Graphene is the thinnest material known – possessing the thickness of a single atom but 200 times stronger than steel – and has a reputation for versatility. Now an ESA-backed project has come up with yet another use for this ‘wonder stuff’, as the basis for a combined temperature and magnetism sensor. 14)

“Any time we can do more with less is a good result for the space sector,” notes ESA materials specialist Ugo Lafont. “Thanks to the unique properties of graphene, our prototype bi-functional sensor can measure magnetic field strength at the same time as taking temperature readings.

“And our tests show the sensor operates reliably from room temperature down to 12 degrees Kelvin. Normally separate temperature sensors are required to accurately measure such wide temperature ranges, right down to cryogenic levels.”


Figure 10: Atom-thick graphene layer. Graphene is made out of a single layer of graphite, a hexagonal lattice of carbon atoms, so thin that it is transparent, and essentially two-dimensional (image credit: Wikimedia Commons/Mohammad Javad Kiani, Fauzan Khairi Che Harun, Mohammad Taghi Ahmadi, Meisam Rahmani, Mahdi Saeidmanesh, Moslem Zare)

Graphene’s discoverers won the Nobel Prize in 2010, but its raw material is commonplace enough: graphite, as found in the tip of pencils. Graphene is made out of a single layer of graphite, a hexagonal lattice of carbon atoms, so thin that it is transparent, and essentially two-dimensional.

Among its other properties, graphene is an excellent electrical conductor, and it is this characteristic that the new bi-functional sensor makes use of.

“The intrinsic electrical resistance of graphene changes as a function of temperature, and this allows the sensor to make very precise measurements across the temperature scale,” adds Ugo. “In addition the sensor employs a phenomenon called the Hall Effect, where a voltage difference is produced across an electrical conductor by the presence of a magnetic field.

“That might sound straightforward enough but to make the design work in practical terms we needed an extremely high quality, large-scale sheet of graphene, nearing a square centimeter in scale. This is where our partner came in, AGP (Advanced Graphene Products) in Poland.”

There is a variety of ways to produce graphene, starting with the low-tech method of applying sticky tape to graphite. AGP employs a deposition method, where a graphene layer is built up on a surface, first developed at Poland’s Lodz University of Technology.


Figure 11: Graphene sensor prototypes. Prototype bi-functional temperature and magnetic sensors based on graphene, placed in the 3D-printed holder seen at their centre. Graphene is the thinnest material known – possessing the thickness of a single atom but 200 times stronger than steel – with a reputation for versatility. Now an ESA-backed project has come up with yet another use for this ‘wonder stuff’, as the basis for a combined temperature and magnetism sensor [image credit: AGP (Advanced Graphene Products)]

“Our High Strength Metallurgical Graphene involves forming graphene flakes on the surface of liquid copper, precipitated from a copper-carbon solution,” explains Dominika Kuten. “This differs from the solid surfaces our competitors employ for standard chemical vapor deposition.


Figure 12: Microscopic view of graphene sheet. A 2000 times magnification scanning electron microscope view of a graphene sheet. Graphene is the thinnest material known – possessing the thickness of a single atom but 200 times stronger than steel – with a reputation for versatility. Now an ESA-backed project with Poland's AGP has come up with yet another use for this ‘wonder stuff’, as the basis for a combined temperature and magnetism sensor (image credit: AGP)

“This liquid surface is so smooth by comparison to its solid equivalent that the graphene flakes match up to each other, minimizing overlapping and mismatches. We have implemented our technology for mass production, and can produce graphene sheets of up to 1 m in length.”

The next step was to align AGP’s graphene sheet to the sensor’s electrical connectors with molecule-scale precision, then safely encapsulate it, a task performed by the PORT (Polish Center for Technology Development).

Testing of the prototype sensor took place at AGP as well as Lodz University of Technology, demonstrating precision down to a hundredth of a degree.

Figure 13: Magnetic measurement using AGP's graphene sensor. Now an ESA-backed project has come up with yet another use for this ‘wonder stuff’, as the basis for a combined temperature and magnetism sensor (image credit: AGP)

Figure 14: Temperature measurement using AGP's graphene sensor. Now an ESA-backed project has come up with yet another use for this ‘wonder stuff’, as the basis for a combined temperature and magnetism sensor (image credit: AGP)

“As well for space, the potential is there for use in a lot of other markets, including for cryogenic equipment, in energy and power markets, even for food and beverage production,” adds Ugo.

“The next step will be the make the design even smaller and more user friendly, while we’re also working on other graphene-based sensor concepts, such as detecting trace levels of contaminants, or even microbes, below the detection threshold of traditional sensors.

“More broadly we’ve been looking into adding graphene for better batteries and other energy storage methods, as well as an added ingredient of various materials, to augment their strength and electrical properties.”

This project was supported through ESA’s Polish Industry Incentive.

Wearable Sensors that Detect Gas Leaks

• April 15, 2021: Gas accidents such as toxic gas leakage in factories, carbon monoxide leakage of boilers, or toxic gas suffocation during manhole cleaning continue to claim lives and cause injuries. Developing a sensor that can quickly detect toxic gases or biochemicals is still an important issue in public health, environmental monitoring, and military sectors. Recently, a research team at POSTECH (Pohang University of Science & Technology) of Korea, has developed an inexpensive, ultra-compact wearable hologram sensor that immediately notifies the user of volatile gas detection. 15)

A joint research team led by Professor Junsuk Rho of departments of mechanical and chemical engineering and Dr. Inki Kim of Department of Mechanical Engineering with Professor Young-Ki Kim and Ph.D. candidate Won-Sik Kim of Department of Chemical Engineering at POSTECH has integrated metasurface with gas-reactive liquid crystal optical modulator to develop a sensor that provides an immediate visual holographic alarm when harmful gases are detected. The findings from this study were published in Science Advances on April 7, 2021. 16)


Figure 15: Some photos of the research team (image credit: POSTECH)

For those working in hazardous environments such as petrochemical plants, gas sensors are life. However, conventional gas sensing devices are not widely used due to their high cost of being made with complex machines and electronic devices. In addition, commercial gas sensors have limitations in that they are difficult to use, and have poor portability and reaction speed.

To solve these issues, the research team utilized the metasurface, well known as a future optical device known to have the invisible cloak effect through making visible objects disappear by controlling the refractive index of light. Metasurface is especially used to transmit two-way holograms or 3D video images by freely controlling light.


Figure 16: Gas sensor elements (image credit: POSTECH)

Using the metasurface, the research team developed a gas sensor that can float a holographic image alarm in space in just a few seconds by using the polarization control of transmitted light that transforms due to the change in orientation of liquid crystal molecules in the liquid crystal layer inside the sensor device when exposed to gas. Moreover, this gas sensor developed by the research team requires no support from external mechanical or electronic devices, unlike other conventional commercial gas sensors. The researchers used isopropyl alcohol as the target hazardous gas, known as a toxic substance that can cause stomach pain, headache, dizziness, and even leukemia.

The newly developed sensor was confirmed to detect even the minute amount of gas of about 200 ppm. In an actual experiment using a board marker, a volatile gas source in our daily life, a visual holographic alarm popped up instantaneously the moment the marker was brought to the sensor.

Moreover, the research team developed a one-step nanocomposite printing method to produce this flexible and wearable gas sensor. The metasurface structure, which was previously processed on a hard substrate, was designed to enable rapid production with a single-step nanocasting process on a curved or flexible substrate.

When the flexible sensor fabricated using this method attaches like a sticker on safety glasses, it can detect gas and display a hologram alarm. It is anticipated to be integrable with glass-type AR display systems under development at Apple, Samsung, Google, and Facebook.

Going a step further, the research team is developing a high-performance environmental sensor that can display the type and concentration level of gases or biochemicals in the surroundings with a holographic alarm, and is studying optical design techniques that can encode various holographic images. If these studies are successful, they can be used to reduce accidents caused by biochemical or gas leaks.

“This newly developed ultra-compact wearable gas sensor provides a more intuitive holographic visual alarm than the conventional auditory or simple light alarms,” remarked Prof. Junsuk Rho. “It is anticipated to be especially effective in more extreme work environments where acoustic and visual noise are intense.”

This study was conducted with the support from the Mid-career Researcher Program, Global Frontier, Regional Leading Research Center, Future Materials Discovery, and the Sejong Science Fellowship of the National Research Foundation of the Ministry of Science and ICT of Korea.

Atom interferometry demonstrated in space for the first time

• April 13, 2021: Extremely precise measurements are possible using atom interferometers that employ the wave character of atoms for this purpose. They can thus be used, for example, to measure the gravitational field of the Earth or to detect gravitational waves. A team of scientists from Germany has now managed to successfully perform atom interferometry in space for the first time – on board a sounding rocket. "We have established the technological basis for atom interferometry on board of a sounding rocket and demonstrated that such experiments are not only possible on Earth, but also in space," said Professor Patrick Windpassinger of the Institute of Physics at Johannes Gutenberg University Mainz (JGU), whose team was involved in the investigation. The results of their analyses have been published in Nature Communications. 17) 18)

A team of researchers from various universities and research centers led by Leibniz University Hannover launched the MAIUS-1 (Matter-Wave Interferometry in Microgravity-1) mission in January 2017. This has since become the first rocket mission on which a Bose-Einstein condensate has been generated in space. This special state of matter occurs when atoms – in this case atoms of rubidium – are cooled to a temperature close to absolute zero, or minus 273 degrees Celsius. "For us, this ultracold ensemble represented a very promising starting point for atom interferometry," explained Windpassinger. Temperature is one of the determining factors, because measurements can be carried out more accurately and for longer periods at lower temperatures.

Atom interferometry: Generating atomic interference by spatial separation and subsequent superposition of atoms

During the experiments, the gas of rubidium atoms was separated using laser light irradiation and then subsequently superpositioned. Depending on the forces acting on the atoms on their different paths, several interference patterns can be produced, which in turn can be used to measure the forces that are influencing them, such as gravity.

Laying the groundwork for precision measurements

The study first demonstrated the coherence, or interference capability, of the Bose-Einstein condensate as a fundamentally required property of the atomic ensemble. To this end, the atoms in the interferometer were only partially superimposed by means of varying the light sequence, which, in the case of coherence, led to the generation of a spatial intensity modulation. The research team has thus demonstrated the viability of the concept, which may lead to further experiments targeting the measurement of the Earth's gravitational field, the detection of gravitational waves, and a test of Einstein's equivalence principle.

Even more measurements will be possible when MAIUS-2 and MAIUS-3 are launched

In the near future, the team wants to go further and investigate the feasibility of high-precision atom interferometry to test Einstein's principle of equivalence. Two more rocket launches, MAIUS-2 and MAIUS-3, are planned for 2022 and 2023, and on these missions the team also intends to use potassium atoms, in addition to rubidium atoms, to produce interference patterns. By comparing the free fall acceleration of the two types of atoms, a test of the equivalence principle with previously unattainable precision can be facilitated. "Undertaking this kind of experiment would be a future objective on satellites or the International Space Station ISS, possibly within BECCAL, the Bose Einstein Condensate and Cold Atom Laboratory, which is currently in the planning phase. In this case, the achievable accuracy would not be constrained by the limited free-fall time aboard a rocket," explained Dr. André Wenzlawski, a member of Windpassinger's research group at JGU, who is directly involved in the launch missions.

The experiment is one example of the highly active research field of quantum technologies, which also includes developments in the fields of quantum communication, quantum sensors, and quantum computing.

The MAIUS-1 sounding rocket mission was implemented as a joint project involving Leibniz University Hannover, the University of Bremen, Johannes Gutenberg University Mainz, Universität Hamburg, Humboldt-Universität zu Berlin, the Ferdinand-Braun-Institut in Berlin, and the German Aerospace Center (DLR). Financing for the project was arranged by the Space Administration of the German Aerospace Center and funds were provided by the German Federal Ministry for Economic Affairs and Energy on the basis of a resolution of the German Bundestag.


Figure 17: An example of an interference pattern produced by the atom interferometer[image credit: Maike Lachmann, IQO (Institute of Quantum Optics), JGU]

Energy Storage Technology

• March 22, 2021: Researchers from Chalmers University of Technology in Gothenburg, Sweden, have produced a structural battery that performs ten times better than all previous versions. It contains carbon fibre that serves simultaneously as an electrode, conductor, and load-bearing material. Their latest research breakthrough paves the way for essentially ’massless’ energy storage in vehicles and other technology. 19)


Figure 18: Structural battery composites cannot store as much energy as lithium-ion batteries, but have several characteristics that make them highly attractive for use in vehicles and other applications. When the battery becomes part of the load bearing structure, the mass of the battery essentially ‘disappears’ (illustration: Yen Strandqvist)

The batteries in today's electric cars constitute a large part of the vehicles' weight (mass), without fulfilling any load-bearing function. A structural battery, on the other hand, is one that works as both a power source and as part of the structure – for example, in a car body. This is termed ‘massless’ energy storage, because in essence the battery’s weight vanishes when it becomes part of the load-bearing structure. Calculations show that this type of multifunctional battery could greatly reduce the mass of an electric vehicle.

The development of structural batteries at Chalmers University of Technology has proceeded through many years of research, including previous discoveries involving certain types of carbon fibre. In addition to being stiff and strong, they also have a good ability to store electrical energy chemically. This work was named by Physics World as one of 2018’s ten biggest scientific breakthroughs.

The first attempt to make a structural battery was made as early as 2007, but it has so far proven difficult to manufacture batteries with both good electrical and mechanical properties.

But now the development has taken a real step forward, with researchers from Chalmers, in collaboration with KTH Royal Institute of Technology in Stockholm, presenting a structural battery with properties that far exceed anything yet seen, in terms of electrical energy storage, stiffness and strength. Its multifunctional performance is ten times higher than previous structural battery prototypes.


Figure 19: Doctor Johanna Xu with a newly manufactured structural battery cell in Chalmers’ composite lab, which she shows to Leif Asp. The cell consists of a carbon fibre electrode and a lithium iron phosphate electrode separated by a fibreglass fabric, all impregnated with a structural battery electrolyte for combined mechanical and electrical function (image credit: Marcus Folino)

The battery has an energy density of 24 Wh/kg, meaning approximately 20 percent capacity compared to comparable lithium-ion batteries currently available. But since the weight of the vehicles can be greatly reduced, less energy will be required to drive an electric car, for example, and lower energy density also results in increased safety. And with a stiffness of 25 GPa, the structural battery can really compete with many other commonly used construction materials.

“Previous attempts to make structural batteries have resulted in cells with either good mechanical properties, or good electrical properties. But here, using carbon fibre, we have succeeded in designing a structural battery with both competitive energy storage capacity and rigidity,” explains Leif Asp, Professor at Chalmers and leader of the project. 20)

Super light electric bikes and consumer electronics could soon be a reality

The new battery has a negative electrode made of carbon fibre, and a positive electrode made of a lithium iron phosphate-coated aluminum foil. They are separated by a fibreglass fabric, in an electrolyte matrix. Despite their success in creating a structural battery ten times better than all previous ones, the researchers did not choose the materials to try and break records – rather, they wanted to investigate and understand the effects of material architecture and separator thickness.

Now, a new project, financed by the Swedish National Space Agency, is underway, where the performance of the structural battery will be increased yet further. The aluminum foil will be replaced with carbon fibre as a load-bearing material in the positive electrode, providing both increased stiffness and energy density. The fibreglass separator will be replaced with an ultra-thin variant, which will give a much greater effect – as well as faster charging cycles. The new project is expected to be completed within two years.

Leif Asp, who is leading this project too, estimates that such a battery could reach an energy density of 75 Wh/kg and a stiffness of 75 GPa. This would make the battery about as strong as aluminum, but with a comparatively much lower weight.

“The next generation structural battery has fantastic potential. If you look at consumer technology, it could be quite possible within a few years to manufacture smartphones, laptops or electric bicycles that weigh half as much as today and are much more compact”, says Leif Asp.

And in the longer term, it is absolutely conceivable that electric cars, electric planes and satellites will be designed with and powered by structural batteries.

“We are really only limited by our imaginations here. We have received a lot of attention from many different types of companies in connection with the publication of our scientific articles in the field. There is understandably a great amount of interest in these lightweight, multifunctional materials,” says Leif Asp.

More about: The research on structural batteries

The structural battery uses carbon fibre as a negative electrode, and a lithium iron phosphate-coated aluminum foil as the positive electrode. The carbon fibre acts as a host for the lithium and thus stores the energy. Since the carbon fibre also conducts electrons, the need for copper and silver conductors is also avoided – reducing the weight even further. Both the carbon fibre and the aluminum foil contribute to the mechanical properties of the structural battery. The two electrode materials are kept separated by a fibreglass fabric in a structural electrolyte matrix. The task of the electrolyte is to transport the lithium ions between the two electrodes of the battery, but also to transfer mechanical loads between carbon fibres and other parts.

The project is run in collaboration between Chalmers University of Technology and KTH Royal Institute of Technology, Sweden's two largest technical universities. The battery electrolyte has been developed at KTH. The project involves researchers from five different disciplines: material mechanics, materials engineering, lightweight structures, applied electrochemistry and fibre and polymer technology.

Funding has come from the European Commission's research program Clean Sky II, as well as the US Air Force.

Move over plastic: desktop 3D printing in metal or ceramics

• 25 November 2020: ESA-supported startup TIWARI Scientific Instruments in Germany has developed a technique allowing low cost 3D printing using a variety of metals and ceramics. Ordinarily producing precision parts in such high-performance materials would be costly in both time and money, but the company can instead shape them using standard 3D printing techniques. 21)


Figure 20: These spur gears – seen here with an euro 1 cent coin for scale – have been produced in stainless steel to a space standard of quality using nothing more than an off-the-shelf desktop 3D printer (image credit: TIWARI Scientific Instruments)

TIWARI’s ‘Fused Filament Fabrication’ (FFF) print process uses thermoplastic filaments that are embedded with particles of the metal or ceramic the part is to be made from. Once the printing is finished, the part – known as a ‘green body’ – is put through a thermal treatment to eliminate the plastic, leaving behind a metal or ceramic item.

“Once this plastic-containing body goes through this treatment then what is left behind is pure metal or ceramic,” explains ESA non-metallic materials and processes engineer Ugo Lafont. “The result is high-quality parts with very good physical properties. So this cheap, simple technique can offer us additional part manufacturing capability for space applications with an expanded pallet of materials.”

Test parts made using the FFF process in stainless steel and titanium metals, as well as aluminia and silicon carbide ceramics underwent a full-scale campaign of non-destructive and destructive testing at the Materials and Electrical Components Laboratory of ESA’s ESTEC technical centre in the Netherlands, assessing their added value and suitability for space.

One surprise has been that the parts possess enhanced mechanical performance compared to their conventionally made equivalents – for instance, stainless steel can be elongated to a previously unachievable 100% without breaking.

TIWARI is a startup hosted at ESA’s Business Incubation Centre Hessen & Baden-Württemberg in Germany, specializing in instruments for thermal characterization of materials as well as 3D printing of high-performance metals and ceramics.

“Desktop 3D printers have become cheaper and cheaper in recent years and there’s been a lot of interest in mixing in materials with traditional print stock,” explains company founder Siddharth Tiwari. “But our company’s particular focus has really been on understanding the process thoroughly and investigating the kind of thermal and mechanical properties we can achieve.

“So this test campaign with ESA was part of our strategic planning from the start, to help commercialize the technology. At a time when other companies are still speculating about the properties achievable with 3D printed parts we have tested and qualified not one but four separate materials.

“This means we’ve ended up with a database no other company possesses, thanks to being able to make use of ESA resources – which otherwise would have cost many tens of thousands of euros. And the fact that our parts make the grade for space helps us in terrestrial markets too.”

The collaboration between the ESA and TIWARI on the testing and evaluation of the 3D printed parts has been facilitated by ESA’s Technology Transfer and Patent Office.

“We hope to offer an affordable solution to a market often put off by the high prices associated with additive manufacturing,” adds Siddharth Tiwari. “Our company offers one of the best price-to-performance ratio in the market, and we have launched an online estimation tool allowing customers to check how much the customized parts they require will cost.”

Shape-shifting mirror

• November 12, 2020: Very large space telescopes are necessary to increase image resolution and sensitivity, whether for deep space exoplanet detection or sharpened views of the terrestrial environment. But large instruments will be harder to align and more sensitive to the absence of gravity and the environmental extremes of space. Being able to actively correct a telescope mirror’s shape offers a way forward. 22)


Figure 21: This bendable space mirror can have its shape shifted to compensate for manufacturing or alignment errors within orbital telescopes or temperature-driven distortions (image credit: ESA)

Piezoelectric actuators placed under this prototype 50 mm mirror serve to deform its shape. The resulting change in shape is invisible to the naked eye, around a thousandth of a millimeter or less, but it will still enable previously impossible missions to take place.

A set of ten mirrors were produced by OHB-System and the Muenster University of Applied Optics in Germany through ESA’s GSTP (General Support Technology Program) – readying promising technologies for space and commercial markets – and tested against launch stresses in ESA’s Mechanical Systems Laboratory.

The most sensitive optical receivers yet for space communications

• October 2, 2020: Communications in space demand the most sensitive receivers possible for maximum reach, while also requiring high bit-rate operations. A novel concept for laser-beam based communications, using an almost noiseless optical preamplifier in the receiver, was recently demonstrated by researchers at Chalmers University of Technology, Sweden. 23)


Figure 22: The experimental setup used in the lab to emulate a deep space data transmission link (illustration: Yen Strandqvist)

In a new paper published in the scientific journal Nature: Light Science & Applications, a team of researchers describes a free-space optical transmission system relying on an optical amplifier that, in principle, does not add any excess noise – in contrast to all other preexisting optical amplifiers, referred to as phase-sensitive amplifiers (PSAs). 24)

The researchers’ new concept demonstrates an unprecedented receiver sensitivity of just one photon-per-information bit at a data rate of 10 gigabits per second. “Our results show the viability of this new approach for extending the reach and data rate in long-distance space communication links. It therefore also has the promise to help break through the present-day data-return bottleneck in deep-space missions, that space agencies around the world are suffering from today,” says Professor Peter Andrekson, head of the research group and author of the article together with PhD Ravikiran Kakarla and senior researcher Jochen Schröder at the Department of Microtechnology and Nanoscience – MC2, at Chalmers University of Technology.


Figure 23: Illustration of the difference between the spot size on Earth when using laser beam or a radio wave beam transmitter on the Moon. The diffraction of power with a laser beam is visibly substantially smaller (illustration: Yen Strandqvist)

Substantially increasing the reach and information rate for future high-speed links will have big implications for technologies such as inter-satellite communication, deep-space missions, and Earth monitoring with light detection and ranging (Lidar). Systems for such high-speed data connections are increasingly using optical laser beams rather than radio-frequency beams. A key reason for this is that the loss of power as the beam propagates is substantially smaller at light wavelengths, since the beam divergence is reduced.

Nevertheless, over long distances, light beams also experience large loss. For example, a laser beam sent from the Earth to the Moon – around 400,000 km – with a 10 cm aperture size, will experience a loss of power of around 80 dB, meaning only 1 part in 100 million will remain. As the transmittable power is limited, it is of critical importance to have receivers that can recover the information sent with as low power received as possible. This sensitivity is quantified as the minimum number of photons per information bit necessary to recover the data without error.

The new concept from Chalmers

In the new concept from Chalmers, information is encoded onto a signal wave, which along with a pump wave at different frequency generates a conjugated wave (known as an idler) in a nonlinear medium. These three waves are launched together into the free space. At the receiving point, after capturing the light in an optical fiber, the PSA amplifies the signal using a regenerated pump wave. The amplified signal is then detected in a conventional receiver.

“This approach fundamentally results in the best possible sensitivity of any pre-amplified optical receiver and also outperforms the current performance of all other state-of-the-art receiver technologies,” says Peter Andrekson.

The system uses a simple modulation format encoded with a standard error correction code and a coherent receiver with digital signal processing for signal recovery. This method is straightforwardly scalable to much higher data rates if needed. It also operates at room temperature, meaning it can be implemented in space terminals and not only on the ground.

The theoretical sensitivity limits of this approach are also discussed in the paper and compared to other existing methods, with the conclusion that the new approach is essentially the best possible for a very broad range of data rates.

This work was supported by the Swedish Research Council, the Knut and Alice Wallenberg Foundation, and the European Research Council.

Mesh reflector for shaped radio beams - ESA's AMPER Project

• September 2020: Antenna reflectors for satellites are often surprisingly ‘lumpy’ looking. Their basic paraboloid convex shape is distorted with additional peaks and valleys. These serve to contour the resulting radio frequency beam, typically to boost signal gain over target countries and minimize it beyond their borders. 25)


Figure 24: This prototype 2.6 m diameter metal-mesh antenna reflector represents a big step forward for the European space sector: versions can be manufactured to reproduce any surface pattern that antenna designers wish, something that was previously possible only with traditional solid antennas (image credit: Leri Datashvili/Large Space Structures GmbH)

“This is really a first for Europe,” says ESA antenna engineer Jean-Christophe Angevain. “China and the US have also been working hard on similar shaped mesh reflector technology. It is needed so that sufficiently large antennas can be deployed in orbit, which would otherwise be too bulky to fit inside a launcher fairing, while also meeting required performance levels.”

ESA’s AMPER (Advanced techniques for mesh reflector with improved radiation pattern performance) project is realized with Large Space Structures GmbH in Eching, Germany, as prime and TICRA in Denmark as subcontractor.

“This tailored surface shaping is traditionally done with traditional metal or carbon fiber reinforced plastic composite reflectors,” adds Jean-Christophe. “The challenge was how to reproduce such shaping using a mesh reflector design. The obvious solution would have been a conventional tension truss double layer solution, with the mesh held together tautly on an alternating ‘push and ‘pull’ basis. A smart alternative solution has been proposed and followed by the team.”

Leri Datashvili, CEO and Chief Designer of Large Space Structures explains: “The design of our shaped mesh reflector is based on tension members supported by a peripheral truss structure which enables decoupling of the shaped surface and the structure. Therefore, the design can be implemented for any size of reflector, for any frequencies ranging from P-band to Ka-band. Furthermore, either deployable or fixed reflector technology can be realized.”

“This 2.6-m ‘breadboard’ prototype proves the concept at C-band frequency, and the RF measurements have shown good correlation with radio-frequency and mechanical predictions” adds Jean-Christophe.

The AMPER project was supported through ESA’s Technology Development Element, with prototype testing carried out in ESA’s Hertz chamber at its ESTEC technical centre in the Netherlands. As a next step the AMPER team plan to produce a deployable version, aimed at Earth observation as well as telecommunications uses.

Meanwhile this prototype reflector will be on show during next month’s virtual ESA Open Day at ESTEC.

Quantum technology: Simple mod makes quantum states last 10,000 times longer

• If we can harness it, quantum technology promises fantastic new possibilities. But first, scientists need to coax quantum systems to stay yoked for longer than a few millionths of a second. 26) 27)

A team of scientists at the University of Chicago's Pritzker School of Molecular Engineering announced the discovery of a simple modification that allows quantum systems to stay operational — or "coherent" — 10,000 times longer than before. Though the scientists tested their technique on a particular class of quantum systems called solid-state qubits, they think it should be applicable to many other kinds of quantum systems and could thus revolutionize quantum communication, computing and sensing.

The study was published Aug. 13 in Science. 28)

"This breakthrough lays the groundwork for exciting new avenues of research in quantum science," said study lead author David Awschalom, the Liew Family Professor in Molecular Engineering, senior scientist at Argonne National Laboratory and director of the Chicago Quantum Exchange. "The broad applicability of this discovery, coupled with a remarkably simple implementation, allows this robust coherence to impact many aspects of quantum engineering. It enables new research opportunities previously thought impractical."

Down at the level of atoms, the world operates according to the rules of quantum mechanics — very different from what we see around us in our daily lives. These different rules could translate into technology like virtually unhackable networks or extremely powerful computers; the U.S. Department of Energy released a blueprint for the future quantum internet in an event at UChicago on July 23. But fundamental engineering challenges remain: Quantum states need an extremely quiet, stable space to operate, as they are easily disturbed by background noise coming from vibrations, temperature changes or stray electromagnetic fields.

Thus, scientists try to find ways to keep the system coherent as long as possible. One common approach is physically isolating the system from the noisy surroundings, but this can be unwieldy and complex. Another technique involves making all of the materials as pure as possible, which can be costly. The scientists at UChicago took a different tack.

"With this approach, we don't try to eliminate noise in the surroundings; instead, we "trick" the system into thinking it doesn't experience the noise," said postdoctoral researcher Kevin Miao, the first author of the paper.

In tandem with the usual electromagnetic pulses used to control quantum systems, the team applied an additional continuous alternating magnetic field. By precisely tuning this field, the scientists could rapidly rotate the electron spins and allow the system to "tune out" the rest of the noise.

"To get a sense of the principle, it's like sitting on a merry-go-round with people yelling all around you," Miao explained. "When the ride is still, you can hear them perfectly, but if you're rapidly spinning, the noise blurs into a background."

This small change allowed the system to stay coherent up to 22 milliseconds, four orders of magnitude higher than without the modification — and far longer than any previously reported electron spin system. (For comparison, a blink of an eye takes about 350 milliseconds). The system is able to almost completely tune out some forms of temperature fluctuations, physical vibrations, and electromagnetic noise, all of which usually destroy quantum coherence.

The simple fix could unlock discoveries in virtually every area of quantum technology, the scientists said.

"This approach creates a pathway to scalability," said Awschalom. "It should make storing quantum information in electron spin practical. Extended storage times will enable more complex operations in quantum computers and allow quantum information transmitted from spin-based devices to travel longer distances in networks."


Figure 25: Postdoctoral researcher Kevin Miao works on quantum research at the University of Chicago’s Pritzker School of Molecular Engineering (photo credit: David Awschalom)

Though their tests were run in a solid-state quantum system using silicon carbide, the scientists believe the technique should have similar effects in other types of quantum systems, such as superconducting quantum bits and molecular quantum systems. This level of versatility is unusual for such an engineering breakthrough.

"There are a lot of candidates for quantum technology that were pushed aside because they couldn't maintain quantum coherence for long periods of time," Miao said. "Those could be re-evaluated now that we have this way to massively improve coherence.

"The best part is, it's incredibly easy to do," he added. "The science behind it is intricate, but the logistics of adding an alternating magnetic field are very straightforward."

Photonics: From custom-built to ready-made

• June 17, 2020: Information technology continues to progress at a rapid pace. However, the growing demands of data centers have pushed electrical input-output systems to their physical limit, which has created a bottleneck. Maintaining this growth will require a shift in how we built computers. The future is optical. 29) 30)

Over the last decade, the field of photonics has provided a solution to the chip-to-chip bandwidth problem in the electronic world by increasing the link distance between servers with higher bandwidth, far less energy, and lower latency compared to electrical interconnects.


Figure 26: An international collaboration team of University California, Santa Barbara (UCSB), California Institute of Technology (Caltech) and EPFL has developed an integrated technology that may revolutionize photonic systems (photo credit: Lin Chang)

One element of this revolution, silicon photonics, was advanced fifteen years ago when UC Santa Barbara and Intel demonstrated silicon laser technology. This has since triggered an explosion of this field. Intel is now delivering millions of silicon photonic transceivers for data centers all around the world.

Now, a collaboration between UC Santa Barbara, Caltech, and EPFL have made another revolutionary discovery in the field. The group managed to simplify and condense a complex optical system onto a single silicon photonic chip. The achievement, published in Nature, significantly lowers the cost of production and allows for easy integration with traditional, silicon chip production. 31)

“The entire internet is driven by photonics now,” says John Bowers, who holds the Fred Kavli Chair in Nanotechnology at UC Santa Barbara and directs the campus’s Institute for Energy Efficiency and led the collaborative research effort.

Despite the great success of photonics in the internet’s backbone, there are still challenges. The explosion of data traffic also means growing requirements for the data rates that silicon photonic chip can handle. So far, most efficient way to address this demand is to use multicolor laser lights to transmit information: the more laser colors, the more information can be carried.

But this poses a problem for integrated lasers, which can generate only one color of laser light at a time. “You might literally need fifty or more lasers in that chip for that purpose,” says Bowers. And using fifty lasers is expensive and inefficient in terms of power. Also, noise and heat can cause the frequency of light that each laser produces to fluctuate. Finally, with multiple lasers, the frequencies can even drift into each other, much like early radio stations did.

A solution can be found in the technology of “optical frequency combs”, which are collections of equally spaced frequencies of laser light. Plotting the frequencies reveals spikes and dips that resemble a hair comb — hence the name.

Generating combs used to require bulky and expensive equipment, but this can be now managed using the recently emerged microresonator-based soliton frequency combs, which are miniaturized frequency comb sources built on CMOS photonic chips. Using this “integrated photonics” approach, the collaborating team has developed the smallest comb generator in the world, which essentially resolves all of these issues.

The system is rather simple, consisting of a commercially available feedback laser and a silicon nitride photonic chip. “What we have is a source that generates all these colors out of one laser and one chip,” says Bowers. “That’s what’s significant about this.”

The simple structure means small scale, less power, and lower cost. The entire setup now fits in a package smaller than a match box whose overall price and power consumption are smaller than previous systems.

The new technology is also much more convenient to operate. Previously, generating a stable comb had been a tricky endeavor. Researchers would have to adjust frequency and power just right to produce a coherent soliton comb, and even then, the process was not guaranteed to generate a comb every time. “The new approach makes the process as easy as switching on a room light,” says Kerry Vahala, Professor of Applied Physics and Information Science and Technology at Caltech, where the new soliton generation scheme was discovered.

“What is remarkable about the result is the full photonic integration and reproducibility with which frequency combs can be generated on demand,” adds Tobias J. Kippenberg, Professor of Physics at EPFL who leads the Laboratory and Photonics and Quantum Measurement (LPQM), and whose laboratory first observed microcombs more than a decade ago.

The EPFL team has provided the ultralow-loss silicon nitride photonic chips, which were fabricated in at EPFL Center of MicroNanoTechnology (CMi) and serve as the key component for soliton comb generation. The low-loss silicon nitride photonics technology has been commercialized via the lab startup LIGENTEC.

The “magic” behind all these improvements lies in an interesting physical phenomenon: when the pump laser and resonator are integrated, their interaction forms a highly coupled system that is self-injection-locking and simultaneously generates “solitons” – pulses that circulate indefinitely inside the resonator and give rise to optical frequency combs.

The new technology is expected to have an extensive impact on photonics. In addition to addressing the demands of multicolor light sources in communication-related products, it also opens up a lot of new opportunities in many applications. One example is optical clocks, which provide the most accurate time standard in the world and are used in a number of applications, from navigation to measuring physical constants.

“Optical clocks used to be large, heavy, and expensive,” says Bowers. “There are only a few in the world. With integrated photonics, we can make something that could fit in a wristwatch, and you could afford it.”

“Low-noise integrated optical microcombs will enable a new generation of optical clocks, communications and sensors,” says Gordon Keeler, the project’s manager at the Defense Advanced Research Projects Agency (DARPA). “We should see more compact, more sensitive GPS receivers coming out of this approach.”

All in all, the future looks bright for photonics. “It is the key step to transfer the frequency comb technology from the laboratory to the real world,” says Bowers. “It will change photonics and our daily lives.”

This research was a collaboration of UC Santa Barbara, the California Institute of Technology and the Swiss Federal Institute of Technology Lausanne (EPFL). The project was funded by DARPA’s Direct On-Chip Digital Optical Synthesizer (DODOS) program, which demonstrated optical synthesizers using photonic integrated circuits.

Physicist creates fifth state of matter from their living room

• May 22, 2020: Dr Amruta Gadge from the Quantum Systems and Devices Laboratory successfully created a Bose-Einstein Condensate (BEC) - considered to be the fifth state of matter - using quantum technology based at the University of Sussex lab facilities (UK) despite working remotely from her living room two miles away. 32)


Figure 27: Dr Amruta Gadge setting up the lasers prior to lockdown. She created the fifth state of matter working from home using quantum technology. This result is believed to be the first time that BEC has been created remotely in a lab that did not have one before (image credit: University of Sussex)

The research team believe the achievement could provide a blueprint for operating quantum technology in inaccessible environments such as space.

Peter Krüger, Professor of Experimental Physics at the University of Sussex, said: “We believe this may be the first time that someone has established a BEC remotely in a lab that didn’t have one before. We are all extremely excited that we can continue to conduct our experiments remotely during lockdown, and any possible future lockdowns.

"But there are also wider implications beyond our team. Enhancing the capabilities of remote lab control is relevant for research applications aimed at operating quantum technology in inaccessible environments such as space, underground, in a submarine, or in extreme climates.”

A BEC consists of a cloud of hundreds of thousands of rubidium atoms cooled down to nanokelvin temperatures which is more than a billion times colder than freezing.

At this point the atoms take on a different property and behave all together as a single quantum object. This quantum object has special properties which can sense very low magnetic fields.

Professor Krüger said: “We use multiple carefully timed steps of laser and radio wave cooling to prepare rubidium gases at these ultralow temperatures. This requires accurate computer control of laser light, magnets and electric currents in microchips based on vigilant monitoring of environmental conditions in the lab while nobody is able to be there to check in person.”

The Quantum Systems and Devices Group have been working on having a second lab with a BEC running consistently over the past nine months as part of a wider project developing a new type of magnetic microscopy and other quantum sensors.

The research team uses atomic gases as magnetic sensors close to various objects including novel advanced materials, ion channels in cells, and the human brain.

Trapped cold quantum gases are controlled to create extremely accurate and precise sensors that are ideal for detecting and studying new materials, geometries and devices.

The research team are developing their sensors to be applied in many areas including electrical vehicle batteries, touch screens, solar cells and medical advancements such as brain imaging.

Just in time before lockdown, researchers set-up a 2D magnetic optical trap (see Figure 27) and have returned only a couple of times to carry out essential maintenance. The team involved in reaching this goal are Professor Peter Krüger, Dr Fedja Orucevic, Dr Amruta Gadge, Dr Julia Fekete, Scott Sleegers, Shobita Bhumbra, Dr William Evans, Robert Shah and Dr Thomas Barrett.

Dr Gadge, Research Fellow In Quantum Physics And Technologies at the University of Sussex, was able to make the complex calculations then optimizing and running the sequence from her home by accessing the lab computers remotely.


Figure 28: The final screen shot confirming the successful creation of the BEC can be seen in this image (image credit: University of Sussex)

She said: “The research team has been observing lockdown and working from home and so we have not been able to access our labs for weeks. But we were determined to keep our research going so we have been exploring new ways of running our experiments remotely. It has been a massive team effort.

"The process has been a lot slower than if I had been in the lab as the experiment is unstable and I’ve had to give 10-15 minutes of cooling time between each run. This is obviously not as efficient and way more laborious to do manually because I’ve not been able to do systematic scans or fix the instability like I could working in the lab.

“We’re hopeful of establishing a skeleton crew back in the labs with social distancing measures in place as soon as it is safe to do so and permitted but we will be able to have many of the team continuing to work from home on a rotational basis thanks to the progress we have made with remote working.“

Scientists use light to accelerate supercurrents, access forbidden light, quantum properties

• May 19, 2020: Scientists are using light waves to accelerate supercurrents and access the unique properties of the quantum world, including forbidden light emissions that one day could be applied to high-speed, quantum computers, communications and other technologies. 33)


Figure 29: This illustration shows light wave acceleration of supercurrents, which gives researchers access to a new class of quantum phenomena. That access could chart a path forward for practical quantum computing, sensing and communicating applications (image credit: Jigang Wang)

The scientists have seen unexpected things in supercurrents – electricity that moves through materials without resistance, usually at super cold temperatures – that break symmetry and are supposed to be forbidden by the conventional laws of physics, said Jigang Wang, a professor of physics and astronomy at Iowa State University, a senior scientist at the U.S. Department of Energy’s Ames Laboratory and the leader of the project.

Wang’s lab has pioneered use of light pulses at terahertz frequencies– trillions of pulses per second – to accelerate electron pairs, known as Cooper pairs, within supercurrents. In this case, the researchers tracked light emitted by the accelerated electrons pairs. What they found were “second harmonic light emissions,” or light at twice the frequency of the incoming light used to accelerate electrons.

That, Wang said, is analogous to color shifting from the red spectrum to the deep blue.

“These second harmonic terahertz emissions are supposed to be forbidden in superconductors,” he said. “This is against the conventional wisdom.”

Wang and his collaborators – including Ilias Perakis, professor and chair of physics at the University of Alabama at Birmingham and Chang-beom Eom, the Raymond R. Holton Chair for Engineering and Theodore H. Geballe Professor at the University of Wisconsin-Madison – report their discovery in a research paper just published online by the scientific journal Physical Review Letters. 34)

“The forbidden light gives us access to an exotic class of quantum phenomena – that’s the energy and particles at the small scale of atoms – called forbidden Anderson pseudo-spin precessions,” Perakis said. (The phenomena are named after the late Philip W. Anderson, co-winner of the 1977 Nobel Prize in Physics who conducted theoretical studies of electron movements within disordered materials such as glass that lack a regular structure.)

Wang’s recent studies have been made possible by a tool called quantum terahertz spectroscopy that can visualize and steer electrons. It uses terahertz laser flashes as a control knob to accelerate supercurrents and access new and potentially useful quantum states of matter. The National Science Foundation has supported development of the instrument as well as the current study of forbidden light.

The scientists say access to this and other quantum phenomena could help drive major innovations:

- “Just like today’s gigahertz transistors and 5G wireless routers replaced megahertz vacuum tubes or thermionic valves over half a century ago, scientists are searching for a leap forward in design principles and novel devices in order to achieve quantum computing and communication capabilities,” said Perakis, with Alabama at Birmingham. “Finding ways to control, access and manipulate the special characteristics of the quantum world and connect them to real-world problems is a major scientific push these days. The National Science Foundation has included quantum studies in its ‘10 Big Ideas’ for future research and development critical to our nation.”

- Wang said, “The determination and understanding of symmetry breaking in superconducting states is a new frontier in both fundamental quantum matter discovery and practical quantum information science. Second harmonic generation is a fundamental symmetry probe. This will be useful in the development of future quantum computing strategies and electronics with high speeds and low energy consumption.”

Before they can get there, though, researchers need to do more exploring of the quantum world. And this forbidden second harmonic light emission in superconductors, Wang said, represents “a fundamental discovery of quantum matter.”

Ultra-thin sail could speed journey to other star systems

• May 19, 2020: A tiny sail made of the thinnest material known – one carbon-atom-thick graphene – has passed initial tests designed to show that it could be a viable material to make solar sails for spacecraft. 35)

Light sails are one of the most promising existing space propulsion technologies that could enable us to reach other star systems within many decades.

Traditional spacecraft carry fuel to power their journeys and use complex orbital maneuvers around other planets. But the weight of the fuel makes them difficult to launch and intricate flyby maneuvers considerably lengthen the journey.

Solar sails need no fuel. Spacecraft equipped with them are thus much lighter and easier to launch.

Figure 30: Video of drop tower research into graphene light sails (image credit: Graphene Sail team)


Figure 31: Graphene light sail. A tiny sail made of the thinnest material known – one carbon-atom-thick graphene – has passed initial tests designed to show that it could be a viable material to make solar sails for spacecraft. Light sails are one of the most promising existing space propulsion technologies that could enable us to reach other star systems within many decades (image credit: Graphene Sail team)

Traditional spacecraft carry fuel to power their journeys and use complex orbital maneuvers around other planets. But the weight of the fuel makes them difficult to launch and intricate flyby maneuvers considerably lengthen the journey.

Solar sails need no fuel. Spacecraft equipped with them are thus much lighter and easier to launch.

Two spacecraft flown over the past decade have already demonstrated the technology, but they used sails made of polyimide and of mylar, a polyester film.

Graphene is much lighter. To test whether it could be used as a sail, researchers used a scrap just 3 millimeters across.

They dropped it from a 100-m tall tower at ZARM (Zentrum für angewandte Raumfahrt­technologie und Mikro­gravitation) in Bremen, Germany, to test whether it worked under vacuum and in microgravity.

Once the sail was in free-fall – effectively eliminating the effects of gravity – they shone a series of laser lights onto it, to see whether it would act as a solar sail.

Shining a 1 watt laser made the sail accelerate by up to 1 m/s2, similar to the acceleration of an office lift, but for solar sails the acceleration continues as long as sunlight keeps hitting the sails, taking spacecraft to higher and higher speeds.

In search of the lighting material of the future

• May 4, 2020: At the Paul Scherrer Institute (PSI), in Villingen Switzerland, researchers have gained insights into a promising material for OLEDs (Organic Light-Emitting Diodes). The substance enables high light yields and would be inexpensive to produce on a large scale - that means it is practically made for use in large-area room lighting. Researchers have been searching for such materials for a long time. The newly generated understanding will facilitate the rapid and cost-efficient development of new lighting appliances in the future. The study appears in the journal Nature Communications. 36) 37)


Figure 32: CuPCP gives off an intense green glow not only when current is applied, but also under UV light (image credit: PSI)

The compound is a yellowish solid. If you dissolve it in a liquid or place a thin layer of it on an electrode and then apply an electric current, it gives off an intense green glow. The reason: The molecules absorb the energy supplied to them and gradually emit it again in the form of light. This process is called electroluminescence. Light-emitting diodes are based on this principle.

This green luminescent substance is a hot candidate for producing OLEDs. For about three years now, OLEDs have been found in the displays of smartphones, for example. In the meantime, the first flexible television screens with these materials have also come onto the market.

In addition, OLEDs make cost-efficient room lighting with a large surface area possible. First, however, the materials best suited to this application need to be found. That's because many substances under consideration for OLEDs contain expensive materials such as iridium, and this impedes their application on a large scale and on extensive surfaces. Without such additives, the materials can actually emit only a small part of the energy supplied to them as light; the rest is lost, for example as vibrational energy.

The goal of current research is to find more efficient materials for cheaper and more environmentally friendly displays and large-area lighting. Here, inexpensive and readily available metals such as copper promise progress.

Under close examination

Researchers have now made a more precise examination of the copper-containing compound CuPCP. There are four copper atoms in the middle of each molecule, surrounded by carbon and phosphorus atoms. Copper is a relatively inexpensive metal, and the compound itself can be easily produced in large quantities - ideal preconditions for use over large extensive surfaces.

"We wanted to understand what the excited state of the compound looks like," says Grigory Smolentsev, a physicist in the operando spectroscopy research group. That is: How does the substance change when it absorbs energy? For example, does the structure of the molecule change? How is the charge distributed over the individual atoms after excitation? "This reveals how high the losses of energy that will not be released as light are likely to be," added Smolentsev, "and it shows us how we can possibly minimize these losses."

Using two large research facilities at PSI - the Swiss Light Source (SLS) and the X-ray free-electron laser SwissFEL - as well as the European Synchrotron Radiation Facility in Grenoble, France, Smolentsev and his collaborators took a closer look at the short-lived excited states of the copper compound.

The measurements confirmed that the substance is a good candidate for OLEDs due to its chemical structure. The compound's quantum chemical properties make it possible to achieve a high light yield. One reason for this is that the molecule is relatively stiff, and its 3D structure changes only slightly when excited. Now researchers can start to further optimize this substance for use in OLEDs.

Tools for the future

What's more, the measurements at the three large research facilities at PSI and in Grenoble were significant not only for the investigation of this one copper-containing compound. There was more at stake: The experimental data obtained this way are also helpful in improving theoretical calculations regarding molecules in general.

"So in the future it will be possible to better predict which compounds are more suitable for OLEDs and which less," says Grigory Smolentsev. "The measurement data will help the chemists understand which part of the molecule stands in the way of high efficiency. And of course: how the compound can be improved to increase its light output."

Triplet excited state of organometallic luminophore for OLEDs probed with pump-probe X-ray techniques.

Smart chips for space

• April 30, 2020: Tiny integrated circuits destined for space missions, etched onto a single wafer of silicon, examined under a magnifier. 38)

To save money on the high cost of fabrication, various chips designed by different companies and destined for multiple ESA projects are crammed onto the same silicon wafers, etched into place at specialized semiconductor manufacturing plants or ‘fabs’.

Once manufactured, the chips, still on the wafer, are tested. The wafers are then chopped up. They become ready for use when placed inside protective packages – just like standard terrestrial microprocessors – and undergo final quality tests.

Through little metal pins or balls sticking out of their packages these miniature brains are then connected to other circuit elements – such as sensors, actuators, memory or power systems – used across the satellite.

Considering the time and money needed to develop complex chips like these, ESA’s Microelectronics section maintains a catalogue of chip designs, known as Intellectual Property (IP) cores, available to European industry through ESA licence.


Figure 33: Technology image of the week. Think of these IP cores as the tiniest mission ‘building blocks’: specialized designs to perform particular tasks in space, laid down within a microchip. These range from single ‘simpler’ functions such as decoding signals from Earth to control the satellite to highly complex computer tasks such as operating a complete spacecraft (image credit: ESA-A Le Floc'h)

Flexible, ultra-thin solar cell

• March 11, 202: ESA has backed the creation of this flexible, ultra-thin solar cell to deliver the best power to mass ratio for space missions. 39)


Figure 34: Just about 0.02 mm thick – thinner than a human hair – the prototype solar cells were developed by Azur Space Solar Power in Germany and tf2 in the Netherlands; the cell seen here is from tf2. The project was backed through ESA’s Technology Development Element, investigating novel technologies for space (image credit: ESA–SJM Photography)

Possessing up to 32% ‘end of life’ efficiency, the solar cells were produced using a technique called ‘epitaxial lift-off’, meaning they were peeled off the Germanium substrate layer they were initially laid down on, so the costly material can be reused.

Both triple- and quadruple-junction solar cells were manufactured. This means they consist of three or four different layers of material, optimized to make use of different wavelengths of light making up the solar spectrum.

These thinner-than-paper solar cells could be harnessed for future ESA satellites or else high-altitude pseudo satellites (HAPS) – uncrewed aircraft or balloons to perform satellite-like tasks from the upper atmosphere.

Satellite design applied to superyacht

• February 27, 2020: Dutch shipbuilder Royal Huisman applied the same concurrent engineering process developed by ESA for space missions to the design of superyacht Sea Eagle II, due to become the world’s largest aluminum sailing yacht when delivered to its owner this spring. 40)

Sea Eagle II’s modern style extends to its design, which took place using concurrent engineering, taking inspiration from the long-established Concurrent Design Facility (CDF) at ESA’s technical center ESTEC in Noordwijk, the Netherlands, where it is employed for performing preliminary design and assessment of potential future space missions and systems.

“Satellites and superyachts are both complex machines, and concurrent engineering is advantageous in designing any complex system,” explains Massimo Bandecchi, founder of ESA’s CDF. “The basic idea is simple: bring together all necessary experts and design tools into a single room to work together as a team on a shared software model that updates immediately as changes are made, to assess design feasibility and trade-offs in a much more effective and reliable way.”

“While our main focus is fulfilling the needs of ESA engineering, there has also been strong interest in our work from industry. Concurrent engineering’s improved performance in terms of time, cost and efficiency speaks for itself. The result is that more than 50 centers have been built following ESA’s original CDF model and are now in operation across Europe, the majority in the space sector, plus around 10 non-space centers.”

Stefan Coronel, Royal Huisman’s Design and Engineering Manager, received training from Massimo and his team before setting up his own concurrent engineering room: “Yacht building is not rocket science, but it does involve a complex, multi-disciplinary system, with lots of trade-offs to be decided.

“The traditional ‘over the hedge’ design method – where one knowledge field does its work, then throws it across to the next team in sequence – demands the subsequent checking of feedback then possible design adjustments, so is quite a time consuming process. In the modern yard-building world there isn’t so much time to spare.

“That said, compared to the dramatic shortening of satellite conceptual design time achieved by ESA, the main benefit we see from concurrent engineering is not gaining time but that the quality of the final design ends up much better, and more complete – giving us confidence to proceed to the build phase.”

Royal Huisman is now applying concurrent engineering to all of their new builds, and many of their refitting and service projects.

Mr. Coronel adds: “Our room is not as fancy as ESA’s CDF, but has the same basic approach of a place where everyone can contribute, with means of accessing all normal engineering tools and calculation methods, plus a splinter room for small separate discussions.”

In the same way that satellite design is broken down into subsystems, yacht design involves some main disciplines taking part in all the sessions: structural strength and stiffness; deck and sail handling; systems such as propulsion, power, heating and air conditioning; electronics and finally interior design – creating a desirable, luxurious interior. Additional external experts, such as noise and vibration specialists, attend as required.

“The kind of trade-offs that concurrent engineering makes easier to resolve include such deceptively simple tasks as placing a side hatch or staircase,” adds Mr. Coronel. “In the case of a hatch it would need to be watertight and endure loads from sea waves, while also integrated with the living space and looking good when trimmed with wood. While any staircase needs to be open and attractive, while also having pipes and electrical cables run through it, and meeting all relevant fire and safety regulations.”

The company’s adoption of concurrent engineering also meant Sea Eagle II’s aluminum panels have had holes and support structures added to them in advance, saving time in construction and the integration of feature such as winches or hatches.


Figure 35: This uniquely contemporary 81 m-long three-masted schooner was recently transported by barge from the company’s shipyard in Vollenhove to Royal Huisman Amsterdam, where its carbon composite rig will be installed, leaving her ready for sea trials and on-board crew training (photo credit: Royal Huisman)

European companies and institutions have variously adopted concurrent engineering for educating students, designing automobiles, planning oil platforms and optimizing the production plant of dairy product company FrieslandCampina.

Controlling light with light

• February 5, 2020: Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), in collaboration with researchers at McMaster University and University of Pittsburgh, have developed a new platform for all-optical computing, meaning computations done solely with beams of light. 41)


Figure 36: SEAS researchers have developed a new platform for all-optical computing, meaning computations done solely with beams of light (image credit: Harvard/SEAS)

“Most computation right now uses hard materials such as metal wires, semiconductors and photodiodes to couple electronics to light,” said Amos Meeks, a graduate student at SEAS and co-first author of the research. “The idea behind all-optical computing is to remove those rigid components and control light with light. Imagine, for example, an entirely soft, circuitry-free robot driven by light from the sun.”

These platforms rely on so-called non-linear materials that change their refractive index in response to the intensity of light. When light is shone through these materials, the refractive index in the path of the beam increases, generating its own, light-made waveguide. Currently, most non-linear materials require high-powered lasers or are permanently changed by the transmission of light.

Here, researchers developed a fundamentally new material that uses reversible swelling and contracting in a hydrogel under low laser power to change the refractive index.

The hydrogel is composed of a polymer network that is swollen with water, like a sponge, and a small number of light-responsive molecules known as spiropyran (which is similar to the molecule used to tint transition lenses). When light is shone through the gel, the area under the light contracts a small amount, concentrating the polymer and changing the refractive index. When the light is turned off, the gel returns to its original state.

When multiple beams are shone through the material, they interact and affect each other, even at large distances. Beam A could inhibit Beam B, Beam B could inhibit Beam A, both could cancel each other out or both could go through — creating an optical logic gate.

“Though they are separated, the beams still see each other and change as a result,” said Kalaichelvi Saravanamuttu, an associate professor of Chemistry and Chemical Biology at McMaster and co-senior author of the study. “We can imagine, in the long term, designing computing operations using this intelligent responsiveness.”

"Not only can we design photoresponsive materials that reversibly switch their optical, chemical and physical properties in the presence of light, but we can use those changes to create channels of light, or self-trapped beams, that can guide and manipulate light,” said co-author Derek Morim, a graduate student in Saravanamuttu’s lab.

“Materials science is changing,” said Joanna Aizenberg, the Amy Smith Berylson Professor of Materials Science at SEAS and co-senior author of the study. “Self-regulated, adaptive materials capable of optimizing their own properties in response to environment replace static, energy-inefficient, externally regulated analogs. Our reversibly responsive material that controls light at exceptionally small intensities is yet another demonstration of this promising technological revolution.”

This research was published in the Proceedings of the National Academy of Sciences. It was co-authored by Ankita Shastri, Andy Tran, Anna V. Shneidman, Victor V. Yashin, Fariha Mahmood, Anna C. Balazs. It was supported in part by the US Army Research Office under Award W911NF-17-1-0351 and by the Natural Sciences and Engineering Research Council, Canadian Foundation for Innovation. 42)

Slow light to speed up LiDAR sensors development

• January 21, 2020: Quicker is not always better, especially when it comes to a 3D sensor in advanced technology. With applications in autonomous vehicles, robots and drones, security systems and more, researchers are striving for a 3D sensor that is compact and easy to use. 43)

A team from Yokohama National University in Japan believes they have developed a method to obtain such a sensor by taking advantage of slow light, an unexpected move in a field where speed is often valued above other variables.


Figure 37: A small-sized silicon photonics chip that can be used for non-mechanical beam steering and scanning (image credit: Yokohama National University)

They published their results on 14 January 20 in the Optica, a journal published by The Optical Society. 44)

LiDAR (Light Detection and Ranging) sensors can map the distance between distant objects and more using laser light. In modern LiDAR sensors, many of the systems are composed of a laser source; a photodetector, which converts light into current; and an optical beam steering device, which directs the light into the proper location.

"Currently existing optical beam steering devices all use some kind of mechanics, such as rotary mirrors," said Toshihiko Baba, paper author and professor in the Department of Electrical and Computer Engineering at Yokohama National University. "This makes the device large and heavy, with limited overall speed and a high cost. It all becomes unstable, particularly in mobile devices, hampering the wide range of applications."

In recent years, according to Baba, more engineers have turned toward optical phased arrays, which direct the optical beam without mechanical parts. But, Baba warned, such an approach can become complicated due to the sheer number of optical antennae required, as well as the time and precision needed to calibrate each piece.

"In our study, we employed another approach - what we call 'slow light,'" Baba said. Baba and his team used a special waveguide "photonic crystal," aimed through a silicon-etched medium. Light is slowed down and emitted to the free space when forced to interact with the photonic crystal. The researchers engaged a prism lens to then direct the beam in the desired direction.

"The non-mechanical steering is thought to be crucial for LiDAR sensors," Baba said. The resulting method and device are small-sized, free of moving mechanics, setting the stage for a solid-state LiDAR. Such a device is considered smaller, cheaper to make and more resilient, especially in mobile applications such as autonomous vehicles.

Next, Baba and his team plan to more fully demonstrate the potential of a solid-state LiDAR, as well as work on improving its performance with the ultimate goal of commercializing the device.

First plant-powered IoT sensor sends signal to space

• 14 January 2020: The first-ever plant-powered sensor has successfully transmitted to a satellite in space. The pilot service, using plants as the energy source, has been developed by the Dutch company Plant-e and Lacuna Space,which is based in the Netherlands and the UK, under ESA’s ARTES (Advanced Research in Telecommunications Systems) program. Because the sensor doesn’t need batteries, due to the internal storage in the system, it’ll reduce cost, maintenance requirements and environmental impact. As long as plants continue to grow, electricity will be produced. 45) 46)


Figure 38: Plant-powered sensors wetlands research site (image credit: Plant-e BV)

Such sensors could be used to connect everyday objects in remote locations, enabling them to send and receive data as part of the IoT (Internet of Things).

The device can inform farmers about the conditions of their crops to help increase yield, and enable retailers to gain detailed information about potential harvests.

It transmits data on air humidity, soil moisture and temperature, enabling field-by-field reporting from agricultural land, rice fields or other aquatic environments. The extremely low power device sends signals at radio frequencies that are picked up by satellites in LEO (Low Earth Orbit).

Plants produce organic matter through photosynthesis, but only part of this matter is used for plant growth. The rest is excreted into the soil through the plant’s roots. In the soil, bacteria around the roots break down this organic matter, releasing electrons as a waste product. The technology developed by Plant-e harvests these electrons to power small electrical devices.

The IoT prototype device, developed by the two companies, uses the electricity generated by living plants to transmit LoRa® [Long Range, LoRa is a low-power wide area network (LPWAN)] messages about air humidity, soil moisture, temperature, cell voltage and electrode potential straight to Lacuna's satellite.

Plant-e, a start-up from Wageningen, the Netherlands, has developed a technology to harvest electrical energy from living plants and bacteria to generate carbon-negative electricity. The output generates enough energy to power LEDs and sensors in small-scale products. 47)

“This collaboration shows how effective plant-electricity already is at its current state of development,” said Plant-e CEO Marjolein Helder. “We hope this inspires others to consider plant-electricity as a serious option for powering sensors.”

Lacuna, based in the UK and the Netherlands, is launching a LEO (Low Earth Orbit) satellite system that will provide a global Internet-of-Things service. The service allows collecting data from sensors even in remote areas with little or no connectivity. At the moment Lacuna Space is offering a pilot service with one satellite in orbit, and three more satellites are awaiting launch during the next few months.

“This opens up a new era in sustainable satellite communications,” says Rob Spurrett, chief executive and co-founder of Lacuna Space. “There are many regions in the world that are difficult to reach, which makes regular maintenance expensive and the use of solar power impossible. Through this technology, we can help people, communities and companies in those regions to improve their lives and businesses.”


Figure 39: Plant-powered sensor schematic (image credit: Plant-e BV)

Frank Zeppenfeldt, who works on future satellite communication systems at ESA, says: “We are very enthusiastic about this demonstration that combines biotechnology and space technology. It will help to collect small data points in agricultural, logistic, maritime and transportation applications—where terrestrial connectivity is not always available.”

Skin-like sensors bring a human touch to wearable tech

• 13 January 2020: University of Toronto Engineering researchers have developed a super-stretchy, transparent and self-powering sensor that records the complex sensations of human skin. 48)

- Dubbed AISkin (Artificial Ionic Skin), the researchers believe the innovative properties of AISkin could lead to future advancements in wearable electronics, personal health care and robotics.


Figure 40: Super stretchy, transparent and self-powering, researchers Xinyu Liu (MIE) and Binbin Ying (MIE, pictured) believe their AISkin will lead to meaningful advancements in wearable electronics, personal health care, and robotics (image credit: Daria Perevezentsev)

- “Since it’s hydrogel, it’s inexpensive and biocompatible — you can put it on the skin without any toxic effects. It’s also very adhesive, and it doesn’t fall off, so there are so many avenues for this material,” Professor Xinyu Liu (MIE), whose lab is focused on the emerging areas of ionic skin and soft robotics.

- The adhesive AISkin is made of two oppositely charged sheets of stretchable substances known as hydrogels. By overlaying negative and positive ions, the researchers create what they call a “sensing junction” on the gel’s surface.

- When the AISkin is subjected to strain, humidity or changes in temperature, it generates controlled ion movements across the sensing junction, which can be measured as electrical signals such as voltage or current.

- “If you look at human skin, how we sense heat or pressure, our neural cells transmit information through ions — it’s really not so different from our artificial skin,” says Liu.

- AISkin is also uniquely tough and stretchable. “Our human skin can stretch about 50 per cent, but our AISkin can stretch up to 400 per cent of its length without breaking,” says Binbin Ying (MIE), a visiting PhD candidate from McGill University who’s leading the project in Liu’s lab. The researchers recently published their findings in Materials Horizons. 49)

Figure 41: Human skin can stretch about 50%, but our AISkin can stretch up to 400% of its length without breaking (image credit: Daria Perevezentsev)

- The new AISkin could open doors to skin-like Fitbits that measure multiple body parameters, or an adhesive touchpad you can stick onto the surface of your hand, adds Liu. “It could work for athletes looking to measure the rigor of their training, or it could be a wearable touchpad to play games.”

- It could also measure the progress of muscle rehabilitation. “If you were to put this material on a glove of a patient rehabilitating their hand for example, the health care workers would be able to monitor their finger-bending movements,” says Liu.

Figure 42: Binbin Ying demonstrates how AISkin could be used to measure the progress of muscle rehabilitation (image credit: Binbin Ying)

- Another application is in soft robotics — flexible bots made completely out of polymers. An example is soft robotic grippers used in factories to handle delicate objects such as light bulbs or food.

- The researchers envision AISkin being integrated onto soft robots to measure data, whether it’s the temperature of food or the pressure necessary to handle brittle objects.

- Over the next year, Liu’s lab will be focused on further enhancing their AISkin, aiming to shrink the size of AISkin sensors through microfabrication. They’ll also add bio-sensing capabilities to the material, allowing it to measure biomolecules in body fluids such as sweat.

- “If we further advance this research, this could be something we put on like a ‘smart bandage,’” says Liu. “Wound healing requires breathability, moisture balance – ionic skin feels like the natural next step.”

Water drop antenna lens

• 08 January 2020: This novel ‘water drop’ antenna lens design for directing radio wave signals was developed by a pair of antenna engineers from ESA and Sweden’s Royal Institute of Technology, KTH. 50)


Figure 43: The inventors of this new lens design, which received an ESA Technical Improvement award in February 2017, like to call it the ‘water drop’ lens because its shape resembles the ripples produced by a water drop at the surface of a fluid (image credit: ESA–SJM Photography)

In the same way that optical lenses focus light, waveguide lenses serve to direct electromagnetic radio wave energy in a given direction – for instance to send out a radar or a communication signal – and minimize energy loss in the process.

Traditional waveguide lenses have complex electrically-sensitive ‘dielectric’ material to restrict electromagnetic signals as desired, but this water drop waveguide lens – once its top plate has been added on – comes down purely to its curved shape directing signals through it.

The lack of dielectrics in this shape-based design is an advantage, especially for space – where they would risk giving off unwanted fumes in orbital vacuum.

The lack of dielectrics in this shape-based design is an advantage, especially for space – where they would risk giving off unwanted fumes in orbital vacuum.

“The lens’s extremely simple structure should make it easy and cheap to manufacture, opening up avenues to a wide variety of potential materials such as metalized plastics,” explains ESA antenna engineer Nelson Fonseca.

“This prototype has been designed for the 30 GHz microwave range but the simplicity of its shape-based design also means it should be applicable to a broad frequency range – the higher the frequency, the smaller the structure, facilitating its integration”.

The idea came out of a brainstorming session during a conference, explains KTH antenna engineer Oscar Quevedo-Teruel: “We took the ‘Rinehart-Luneburg lens’, also called the geodesic lens, as our starting point. This is a cylindrical waveguide lens developed in the late 1940s, mostly for radar applications.

“We wanted the same performance, while reducing its size and height. So the idea we had was to retain the functional curvature of the original design by folding it in on itself, reducing its profile by a factor of four in the specific case of the manufactured prototype.”

This first prototype of a water drop lens was tested at KTH facilities, Oscar adds, to measure its radiation patterns, efficiency and gain: “While a conventional Luneburg lens might suffer from elevated dielectric losses, especially when used at higher frequencies, this design shows marginal signal loss thanks to its fully metallic design.”

Besides space applications, such as Earth observation and satellite communications on small satellites, this antenna has also attracted the attention of non-space companies. The Ericsson company is looking into using the compact design for the fifth generation mobile phone networks. The concept could also be used for guidance radars in the next generation of self-driving cars.

Researchers build a particle accelerator that fits on a chip

• 02 January 2020: On a hillside above Stanford University, the SLAC National Accelerator Laboratory operates a scientific instrument nearly 2 miles long. In this giant accelerator, a stream of electrons flows through a vacuum pipe, as bursts of microwave radiation nudge the particles ever-faster forward until their velocity approaches the speed of light, creating a powerful beam that scientists from around the world use to probe the atomic and molecular structures of inorganic and biological materials. 51) 52)

Now, for the first time, scientists have created a silicon chip that can accelerate electrons — albeit at a fraction of the velocity of the most massive accelerators — using an infrared laser to deliver, in less than a hair's width, the sort of energy boost that takes microwaves many feet.


Figure 44: This image, magnified 25,000 times, shows a section of a prototype accelerator-on-a-chip. The segment shown here are one-tenth the width of a human hair. The oddly shaped gray structures are nanometer-sized features carved in to silicon that focus bursts of infrared laser light, shown in yellow and purple, on a flow of electrons through the center channel. As the electrons travel from left to right, the light focused in the channel is carefully synchronized with passing particles to move them forward at greater and greater velocities. By packing 1,000 of these acceleration channels onto an inch-sized chip, Stanford researchers hope to create an electron beam that moves at 94 percent of the speed of light, and to use this energized particle flow for research and medical applications (image credit: Neil Sapra)

Writing in the Jan. 3 issue of Science, a team led by electrical engineer Jelena Vuckovic explained how they carved a nanoscale channel out of silicon, sealed it in a vacuum and sent electrons through this cavity while pulses of infrared light—to which silicon is as transparent as glass is to visible light—were transmitted by the channel walls to speed the electrons along. 53)

The accelerator-on-a-chip demonstrated in Science is just a prototype, but Vuckovic said its design and fabrication techniques can be scaled up to deliver particle beams accelerated enough to perform cutting-edge experiments in chemistry, materials science and biological discovery that don't require the power of a massive accelerator.

“The largest accelerators are like powerful telescopes. There are only a few in the world and scientists must come to places like SLAC to use them,” Vuckovic said. “We want to miniaturize accelerator technology in a way that makes it a more accessible research tool.”

Team members liken their approach to the way that computing evolved from the mainframe to the smaller but still useful PC. Accelerator-on-a-chip technology could also lead to new cancer radiation therapies, said physicist Robert Byer, a co-author of the Science paper. Again, it’s a matter of size. Today, medical X-ray machines fill a room and deliver a beam of radiation that’s tough to focus on tumors, requiring patients to wear lead shields to minimize collateral damage.

“In this paper we begin to show how it might be possible to deliver electron beam radiation directly to a tumor, leaving healthy tissue unaffected,” said Byer, who leads the ACHIP (Accelerator on a Chip International Program), a broader effort of which this current research is a part.

Inverse design

In their paper, Vuckovic and graduate student Neil Sapra, the first author, explain how the team built a chip that fires pulses of infrared light through silicon to hit electrons at just the right moment, and just the right angle, to move them forward just a bit faster than before.

To accomplish this, they turned the design process upside down. In a traditional accelerator, like the one at SLAC, engineers generally draft a basic design, then run simulations to physically arrange the microwave bursts to deliver the greatest possible acceleration. But microwaves measure 4 inches from peak to trough, while infrared light has a wavelength one-tenth the width of a human hair. That difference explains why infrared light can accelerate electrons in such short distances compared to microwaves. But this also means that the chip's physical features must be 100,000 times smaller than the copper structures in a traditional accelerator. This demands a new approach to engineering based on silicon integrated photonics and lithography.

Vuckovic's team solved the problem using inverse design algorithms that her lab has developed. These algorithms allowed the researchers to work backward, by specifying how much light energy they wanted the chip to deliver, and tasking the software with suggesting how to build the right nanoscale structures required to bring the photons into proper contact with the flow of electrons.

Vuckovic's team solved the problem using inverse design algorithms that her lab has developed. These algorithms allowed the researchers to work backward, by specifying how much light energy they wanted the chip to deliver, and tasking the software with suggesting how to build the right nanoscale structures required to bring the photons into proper contact with the flow of electrons.

The design algorithm came up with a chip layout that seems almost otherworldly. Imagine nanoscale mesas, separated by a channel, etched out of silicon. Electrons flowing through the channel run a gantlet of silicon wires, poking through the canyon wall at strategic locations. Each time the laser pulses—which it does 100,000 times a second—a burst of photons hits a bunch of electrons, accelerating them forward. All of this occurs in less than a hair's width, on the surface of a vacuum-sealed silicon chip, made by team members at Stanford.

The researchers want to accelerate electrons to 94 percent of the speed of light, or 1 million electron volts (1MeV), to create a particle flow powerful enough for research or medical purposes. This prototype chip provides only a single stage of acceleration, and the electron flow would have to pass through around 1,000 of these stages to achieve 1MeV. But that's not as daunting at it may seem, said Vuckovic, because this prototype accelerator-on-a-chip is a fully integrated circuit. That means all of the critical functions needed to create acceleration are built right into the chip, and increasing its capabilities should be reasonably straightforward.

The researchers plan to pack a thousand stages of acceleration into roughly an inch of chip space by the end of 2020 to reach their 1MeV target. Although that would be an important milestone, such a device would still pale in power alongside the capabilities of the SLAC research accelerator, which can generate energy levels 30,000 times greater than 1MeV. But Byer believes that, just as transistors eventually replaced vacuum tubes in electronics, light-based devices will one day challenge the capabilities of microwave-driven accelerators.

Meanwhile, in anticipation of developing a 1MeV accelerator on a chip, electrical engineer Olav Solgaard, a co-author on the paper, has already begun work on a possible cancer-fighting application. Today, highly energized electrons aren't used for radiation therapy because they would burn the skin. Solgaard is working on a way to channel high-energy electrons from a chip-sized accelerator through a catheter-like vacuum tube that could be inserted below the skin, right alongside a tumor, using the particle beam to administer radiation therapy surgically.

"We can derive medical benefits from the miniaturization of accelerator technology in addition to the research applications," Solgaard said.

Some background on SLAC : SLAC National Accelerator Laboratory operates in Menlo Park, California, and is a United States Department of Energy Laboratory, under the programmatic direction of the U.S. Department of Energy Office of Science. Originally named SLAC (Stanford Linear Accelerator Center), now referred to as ”National Accelerator Laboratory,” SLAC was founded in 1962 just west of the university's campus, covering 426 acres. The SLAC research program centers on experimental and theoretical physics researching elementary particle physics using electron beams and a broad program of research in atomic and solid-state physics. In March 2009 it was announced that the SLAC National Accelerator Laboratory was to Receive $68.3 Million in Recovery Act Funding to be disbursed by Department of Energy's Office of Science. As of 2005, SLAC employs over 1,000 people, some 150 of whom are physicists with doctorate degrees. SLAC also serves over 3,000 visiting researchers yearly, operating particle accelerators for high-energy physics, as well as the Stanford Synchrotron Radiation Laboratory (SSRL) for synchrotron light radiation research, which aided in the research of Stanford Professor Roger D. Kornberg as he won a Nobel Prize in Chemistry in 2006. 54)


Figure 45: Aerial photo showing the 2 mile length of SLAC, as it is the largest linear accelerator in the world (image credit: Stanford University)

ESA helps industry for 5G innovation

25 September 2019: Connecting people and machines to everything, everywhere and at all times through 5G networks promises to transform society. People will be able to access information and services developed to meet their immediate needs but, for this to happen seamlessly, satellite networks are needed alongside terrestrial ones. 55)

Figure 46: Space's part in the 5G revolution. Everybody is talking about 5G, the new generation of wireless communication. We are at the start of a revolution in connectivity for everything, everywhere, at all times. Space plays at important roll in this revolution. We need satellites to ensure businesses and citizens can benefit smoothly from 5G (video credit: ESA)

The European Space Agency is working with companies keen to develop and use space-enabled seamless 5G connectivity to develop ubiquitous services. At the UK Space Conference, held from 24 to 26 September in Newport, South Wales, UK, ESA is showcasing its work with several British-based companies, supported by the UK Space Agency.

The companies are working on applications that range from autonomous ships to connected cars and drone delivery, from cargo logistics to emergency services, from media and broadcast to financial services.

Spire is a satellite-powered data company that provides predictive analysis for global maritime, aviation and weather forecasting. It uses automatic identification systems aboard ships to track their whereabouts on the oceans.

Spire’s network of 80 nanosatellites picks up the identity, position, course and speed of each vessel. Thanks to intelligent machine-learning algorithms, it can predict vessel locations and the ship’s estimated time of arrival at port, enabling port authorities to manage busy docks and market traders to price the goods carried aboard.

Peter Platzer, chief executive of Spire, said: “ESA recognized the value of smaller, more nimble satellites and was looking for a provider that could bring satellites more rapidly and cheaper to orbit. That really was the start of our collaboration. ESA was instrumental in the fact that Spire’s largest office today is in the UK and most of its workforce is in Europe.”

Integrating the ubiquity and unprecedented performance of satellites with terrestrial 5G networks is fundamental to the future success of 'Project Darwin', a project to develop connected cars in a partnership between ESA, Telefonica 02, a satellite operator, the universities of Oxford and Glasgow and several UK-based start-up companies.

Connected cars need to switch seamlessly between terrestrial and satellite networks, so that people and goods can move across the country without any glitches.

Darwin relies on a terminal that will allow seamless switching between the networks.

Daniela Petrovic of Telefonica O2, who founded Darwin, said: “There is a really nice ecosystem of players delivering innovation. ESA provided the opportunities to start discussions with satellite operators and helped us create this partnership.

“There is a good body of knowledge within ESA on innovation and science hubs and this gave us the opportunity to see what other start-ups are doing. Through ESA, we are getting exposure to 22 member state countries which can see the opportunity and maybe get involved.”

Magali Vaissiere, Director of Telecommunications and Integrated Applications at ESA, said: “We are very excited to see the response of industry to our Space for 5G initiative, which aims to bring together the cellular and satellite telecommunications world and provide the connectivity fabric to enable the digital transformation of industry and society.

“The showcase of flagship 5G projects today confirms the strategic importance of our Space for 5G initiative, which will be a significant strategic part of the upcoming ESA Conference of Ministers to be held in November.”

Other companies that formed part of the showcase include: Cranfield University, which as part of its Digital Aviation Research and Technology Centre is set to spearhead the UK’s research into digital aviation technology; HiSky, a satellite virtual network operator that offers global low-cost voice, data and internet of things communications using existing telecommunications satellites; Inmarsat, a global satellite operator that is showcasing a range of new maritime services enabled by the seamless integration of 5G cellular and satellite connectivity; Open Cosmos, a small satellite manufacturer based at Harwell in Oxfordshire, which is investigating how to deliver 5G by satellite; and Sky and Space Global based in London that plans a constellation of 200 nanosatellites in equatorial low Earth orbit for narrowband communications.

Glowing solar cell

25 September 2019: A solar cell is being turned into a light source by running electric current through it. Such ‘luminescence’ testing is performed routinely in ESA’s Solar Generator Laboratory, employed to detect cell defects – such as the cracks highlighted here. 56)

By happy accident the solar (or ‘photovoltaic’) cell was invented in 1954, just before the start of the Space Age, allowing satellites to run off the abundant sunshine found in Earth orbit and beyond.


Figure 47: Made from the same kind of semiconductor materials as computer circuits, solar cells are designed so that incoming sunlight generates an electric current. But the process can be reversed for test purposes: apply an electric charge and a solar cell will glow (image credit: ESA–SJM Photography)

Solar cells, carefully assembled together into arrays, are an essential part of space missions, together with specially-designed batteries for times when a satellite needs more power, passes into darkness or faces a power emergency – plus the power conditioning and distribution electronics keeping all parts of a mission supplied with the power they require.

“Space power technologies are second only to launchers in ensuring European competitiveness and non-dependence,” comments Véronique Ferlet-Cavrois, Head of ESA’s Power Systems, EMC & Space Environment Division.

“Without the research and development ESA performs with European industry to ensure the continued availability of high-performance space power systems and components we would be left utterly reliant on foreign suppliers, or missions wouldn’t fly at all. We will be taking a look back at the important work done during the last three decades during this month’s European Space Power Conference.”

The 12th European Space Power Conference (ESPC) is taking take place in Juan-les-Pins, Côte d'Azur, France, from 30 September to 4 October, with almost 400 participants. Véronique is chairing the event.

“It will begin 30 years to the week from the very first conference in the series,” adds ESA power conditioning engineer Mariel Triggianese, ESPC’s technical coordinator.

“So we’ll be commemorating our past but also looking forward. Our theme is ‘Space Power, Achievements and Challenges’. The chief technology officers from Airbus, Thales, Ariane Group and OHB will be joined by ESA’s Director of Technology Engineering and Quality, Franco Ongaro, to discuss the space power needs of their markets into the future.”

Quantum light sources pave the way for optical circuits

05 August 2019: An international team headed up by Alexander Holleitner and Jonathan Finley, physicists at the Technical University of Munich (TUM), has succeeded in placing light sources in atomically thin material layers with an accuracy of just a few nanometers. The new method allows for a multitude of applications in quantum technologies, from quantum sensors and transistors in smartphones through to new encryption technologies for data transmission. 57) 58)

Previous circuits on chips rely on electrons as the information carriers. In the future, photons which transmit information at the speed of light will be able to take on this task in optical circuits. Quantum light sources, which are then connected with quantum fiber optic cables and detectors are needed as basic building blocks for such new chips.


Figure 48: By bombarding thin molybdenum sulfide layers with helium ions, physicists at TUM succeeded in placing light sources in atomically thin material layers with an accuracy of just a few nanometers. The new method allows for a multitude of applications in quantum technologies (image credit: TUM)

First step towards optical quantum computers: "This constitutes a first key step towards optical quantum computers," says Julian Klein, lead author of the study. "Because for future applications the light sources must be coupled with photon circuits, waveguides for example, in order to make light-based quantum calculations possible."

The critical point here is the exact and precisely controllable placement of the light sources. It is possible to create quantum light sources in conventional three-dimensional materials such as diamond or silicon, but they cannot be precisely placed in these materials.

Deterministic defects: The physicists then used a layer of the semiconductor molybdenum disulfide (MoS2) as the starting material, just three atoms thick. They irradiated this with a helium ion beam which they focused on a surface area of less than one nanometer.

In order to generate optically active defects, the desired quantum light sources, molybdenum or sulfur atoms are precisely hammered out of the layer. The imperfections are traps for so-called excitons, electron-hole pairs, which then emit the desired photons.

Technically, the new helium ion microscope at the Walter Schottky Institute's Center for Nanotechnology and Nanomaterials, which can be used to irradiate such material with an unparalleled lateral resolution, was of central importance for this.

On the road to new light sources: Together with theorists at TUM, the Max Planck Society, and the University of Bremen, the team developed a model which also describes the energy states observed at the imperfections in theory.

In the future, the researchers also want to create more complex light source patterns, in lateral two-dimensional lattice structures for example, in order to thus also research multi-exciton phenomena or exotic material properties.

This is the experimental gateway to a world which has long only been described in theory within the context of the so-called Bose-Hubbard model which seeks to account for complex processes in solids.

Quantum sensors, transistors and secure encryption: And there may be progress not only in theory, but also with regard to possible technological developments. Since the light sources always have the same underlying defect in the material, they are theoretically indistinguishable. This allows for applications which are based on the quantum-mechanical principle of entanglement.

"It is possible to integrate our quantum light sources very elegantly into photon circuits," says Klein. "Owing to the high sensitivity, for example, it is possible to build quantum sensors for smartphones and develop extremely secure encryption technologies for data transmission."

Driverless shuttle

10 July 2019: ESA’s technical heart will be serving as a testbed for this driverless shuttle in the coming months. 59)

The Agency’s ESTEC establishment in Noordwijk, the Netherlands, is working with vehicle owner Dutch Automated Mobility, provincial and municipal governments and the bus company Arriva to assess its viability as a ‘last mile’ solution for public transport.

The fully autonomous vehicle calculates its position using a fusion of satellite navigation, lidar ‘laser radar’, visible cameras and motion sensors. Once it enters service in October it will be used to transport employees from one side of the ESTEC complex to the other.

The fully-electric, zero-emission shuttle will respect the on-site speed limit of 15 km/h, and for its first six months of service will carry a steward to observe its operation along its preprogrammed 10-minute-long roundtrip.


Figure 49: This driverless shuttle will soon be tested at ESA/ESTEC in the Netherlands (image credit: ESA, B. Smith)

New Method Can Spot Failing Infrastructure from Space

09 July 2019: We rely on bridges to connect us to other places, and we trust that they're safe. While many governments invest heavily in inspection and maintenance programs, the number of bridges that are coming to the end of their design lives or that have significant structural damage can outpace the resources available to repair them. But infrastructure managers may soon have a new way to identify the structures most at risk of failure. 60)


Figure 50: A satellite view of the Morandi Bridge in Genoa, Italy, prior to its August 2018 collapse. The numbers identify key bridge components. Numbers 4 through 8 correspond to the bridge's V-shaped piers (from West to East). Numbers 9 through 11 correspond to three independent balance systems on the bridge. In the annotated version, the black arrows identify areas of change based on data from the Cosmo-SkyMed satellite constellation (image credit: NASA/JPL-Caltech/Google)

Scientists, led by Pietro Milillo of NASA's Jet Propulsion Laboratory in Pasadena, California, have developed a new technique for analyzing satellite data that can reveal subtle structural changes that may indicate a bridge is deteriorating - changes so subtle that they are not visible to the naked eye.

In August 2018, the Morandi Bridge, near Genoa, Italy, collapsed, killing dozens of people. A team of scientists from NASA, the University of Bath in England and the Italian Space Agency used synthetic aperture radar (SAR) measurements from several different satellites and reference points to map relative displacement - or structural changes to the bridge - from 2003 to the time of its collapse. Using a new process, they were able to detect millimeter-size changes to the bridge over time that would not have been detected by the standard processing approaches applied to spaceborne synthetic aperture radar observations.

They found that the deck next to the bridge's collapsed pier showed subtle signs of change as early as 2015; they also noted that several parts of the bridge showed a more significant increase in structural changes between March 2017 and August 2018 - a hidden indication that at least part of the bridge may have become structurally unsound.

"This is about developing a new technique that can assist in the characterization of the health of bridges and other infrastructure," Millilo said. "We couldn't have forecasted this particular collapse because standard assessment techniques available at the time couldn't detect what we can see now. But going forward, this technique, combined with techniques already in use, has the potential to do a lot of good."

The technique is limited to areas that have consistent synthetic aperture radar-equipped satellite coverage. In early 2022, NASA and the Indian Space Research Organization (ISRO) plan to launch the NASA-ISRO Synthetic Aperture Radar (NISAR), which will greatly expand that coverage. Designed to enable scientists to observe and measure global environmental changes and hazards, NISAR will collect imagery that will enable engineers and scientists to investigate the stability of structures like bridges nearly anywhere in the world about every week.

"We can't solve the entire problem of structural safety, but we can add a new tool to the standard procedures to better support maintenance considerations," said Milillo.

The majority of the SAR data for this study was acquired by the Italian Space Agency's COSMO-Skymed constellation and the European Space Agency's (ESA's) Sentinel-1a and -1b satellites. The research team also used historical data sets from ESA's Envisat satellite. The study was recently published in the journal Remote Sensing. 61)

Atomic motion captured in 4-D for the first time

27 June 2019: Everyday transitions from one state of matter to another—such as freezing, melting or evaporation—start with a process called "nucleation," in which tiny clusters of atoms or molecules (called "nuclei") begin to coalesce. Nucleation plays a critical role in circumstances as diverse as the formation of clouds and the onset of neurodegenerative disease. 62)

A UCLA-led team has gained a never-before-seen view of nucleation—capturing how the atoms rearrange at 4-D atomic resolution (that is, in three dimensions of space and across time). The findings, published in the journal Nature, differ from predictions based on the classical theory of nucleation that has long appeared in textbooks. 63)

"This is truly a groundbreaking experiment—we not only locate and identify individual atoms with high precision, but also monitor their motion in 4-D for the first time," said senior author Jianwei "John" Miao, a UCLA professor of physics and astronomy, who is the deputy director of the STROBE National Science Foundation Science and Technology Center and a member of the California NanoSystems Institute at UCLA.

Research by the team, which includes collaborators from Lawrence Berkeley National Laboratory, University of Colorado at Boulder, University of Buffalo and the University of Nevada, Reno, builds upon a powerful imaging technique previously developed by Miao's research group. That method, called "atomic electron tomography," uses a state-of-the-art electron microscope located at Berkeley Lab's Molecular Foundry, which images a sample using electrons. The sample is rotated, and in much the same way a CAT scan generates a three-dimensional X-ray of the human body, atomic electron tomography creates stunning 3D images of atoms within a material.

Miao and his colleagues examined an iron-platinum alloy formed into nanoparticles so small that it takes more than 10,000 laid side by side to span the width of a human hair. To investigate nucleation, the scientists heated the nanoparticles to 520 º Celsius ( 968º Fahrenheit), and took images after 9 minutes, 16 minutes and 26 minutes. At that temperature, the alloy undergoes a transition between two different solid phases.


Figure 51: The image shows 4D atomic motion is captured in an iron-platinum nanoparticle at three different annealing times. The experimental observations are inconsistent with classical nucleation theory, showing the need of a model beyond

Minimize Technologies Continued

SUN-to-LIQUID (Fuels from concentrated sunlight)

June 2019: The EU (European Union) energy roadmap for 2050 aims at a 75% share of renewables in the gross energy consumption. Achieving this target requires a significant share of alternative transportation fuels, including a 40% target share of low carbon fuels in aviation. 64) Therefore the European Commission calls for the development of sustainable fuels from non-biomass non-fossil sources.

In contrast to biofuels, solar energy is undisputedly scalable to any future demand and is already utilized at large scale to produce heat and electricity. Solar energy may also be used to produce hydrogen, but the transportation sector cannot easily replace hydrocarbon fuels, with aviation being the most notable example. Due to long design and service times of aircraft the aviation sector will critically depend on the availability of liquid hydrocarbons for decades to come . 65) Heavy duty trucks, maritime and road transportation are also expected to rely strongly on liquid hydrocarbon fuels. 66) Thus, the large volume availability of ‘drop-in’ capable renewable fuels is of great importance for decarbonizing the transport sector.

This challenge is addressed by the four year solar fuels project SUN-to-LIQUID kicked off in January 2016.

The European H2020 project aims at developing a solar thermochemical technology as a highly promising fuel path at large scale and competitive costs.

Solar radiation is concentrated by a heliostat field and efficiently absorbed in a solar reactor that thermochemically converts H2O and CO2 to syngas which is subsequently processed to Fischer-Tropsch hydro-carbon fuels. Solar-to-syngas energy conversion efficiencies exceeding 30% can potentially be realized (67)) thanks to favorable thermodynamics at high temperature and utilization of the full solar spectrum . 68)

Expected Innovations

The following key innovations are expected from the SUN-to-LIQUID project:

• Advanced modular solar concentration technology for high-flux/high-temperature applications.

• Modular solar reactor technology for the thermochemical production of syngas from H2O and CO2 at field scale and with record-high solar energy conversion efficiency.

• Optimization of high-performance redox materials and reticulated porous ceramic (RPC) structures favorable thermodynamics, rapid kinetics, stable cyclic operation, and efficient heat and mass transfer.

• Pre-commercial integration of all subsystems of the process chain to solar liquid fuels, namely: the high-flux solar concentrator, the solar thermochemical reactor, and the gas-to-liquid conversion unit.


SUN-to-LIQUID will design, fabricate, and experimentally validate a large-scale, complete solar fuel production plant.

The preceding EU-project SOLAR-JET has recently demonstrated the first-ever solar thermochemical kerosene production from H2O and CO2 in a laboratory environment. 69) A total of 291 stable redox cycles were performed, yielding 700 standard liters of high-quality syngas, which was compressed and further processed via Fischer-Tropsch synthesis to a mixture of naphtha, gasoil, and kerosene. 70)

As a follow-up project, SUN-to-LIQUID will design, fabricate, and experimentally validate a more than 12-fold scale-up of the complete solar fuel production plant and will establish a new milestone in reactor efficiency. The field validation will integrate for the first time the whole production chain from sunlight, H2O and CO2 to liquid hydrocarbon fuels.


Figure 52: SUN-to-LIQUID will realize three subsystems (image credit: EC)

1) A high-flux solar concentrating subsystem — Consisting of a sun-tracking heliostat field, that delivers radiative power to a solar reactor positioned at the top of a small tower.

2) A 50 kW solar thermochemical reactor subsystem — For syngas production from H2O and CO2 via the ceria-based thermochemical redox cycle, with optimized heat transfer, fluid mechanics, material structure, and redox chemistry.

3) A gas-to-liquid conversion subsystem — Comprising compression and storage units for syngas and a dedicated micro FT unit for the synthesis of liquid hydrocarbon fuels.

SUN-to-LIQUID will run a long-term operation campaign: SUN-to-LIQUID will parametrically optimize the solar thermochemical fuel plant on a daily basis over the time scale of months under realistic steady-state and transient conditions relevant to large-scale industrial implementation.

Concept and Approach

The SUN-to-LIQUID approach uses concentrated solar energy to synthesize liquid hydrocarbon fuels from H2O and CO2. This reversal of combustion is accomplished via a high-temperature thermochemical cycle based on metal oxide redox reactions which convert H2O and CO2 into energy-rich synthesis gas (syngas), a mixture of mainly H2 and CO.71) This two-step cycle for splitting H2O and CO2 is schematically represented by:

The thermochemical process

Since H2/CO and O2 are formed in different steps, the problematic high-temperature fuel/O2 separation is eliminated. The net product is high-quality synthesis gas (syngas), which is further processed to liquid hydrocarbons via Fischer-Tropsch (FT) synthesis. FT synthetic paraffinic kerosene derived from syngas is already certified for aviation.

SUN-to-LIQUID uses concentrated solar radiation as the source of high-temperature process heat to drive endothermic chemical reactions for solar fuel production. 72) A variety of redox active materials have been explored by different research groups. 73) Among them, non-stoichiometric cerium oxide (ceria) has emerged as an attractive redox active material because of its high oxygen ion conductivity and cyclability, while maintaining its fluorite-type structure and phase.

Reactor configuration

The laboratory-scale solar reactor for a radiative power input of 4 kW has been designed, fabricated, and experimentally demonstrated at ETH Zurich. The reactor configuration, which was used in the FP7-project SOLAR-JET, is schematically shown in Figure 53.

It consists of a cavity receiver containing a reticulated porous ceramic (RPC) foam-type structure made of pure CeO2 that was directly exposed to concentrated solar radiation. The production of H2 from H2O, CO from CO2, and high quality syngas suitable for FT synthesis by simultaneously splitting a mixture of H2O and CO2 has been demonstrated (Ref. 70).

The main objective of SUN-to-LIQUID is the scale-up and experimental demonstration of the complete process chain to solar liquid fuels from H2O and CO2 at a pre-commercial size, i.e. moving from a 4 kW setup in the laboratory to a 50 kW pre-commercial plant in the field. SUN-to-LIQUID will demonstrate an enhanced solar-to-fuel energy conversion efficiency and validate the field suitability.


Figure 53: Schematic of the reactor configuration in the FP7-project SOLAR-JET (image credit: FC)

SUN-to-LIQUID will demonstrate an enhanced solar-to-fuel energy conversion efficiency and validate the field suitability.

The high-flux solar concentrating subsystem consists of an ultra-modular solar heliostat central receiver that provides intense solar radiation for high temperature applications beyond the capabilities of current commercial CSP installations. This subsystem is constructed at IMDEA Energía at Móstoles Technology Park, Madrid, in 2016. The customized heliostat field makes use of most recent developments on small size heliostats and a tower with reduced height (15 m) to minimize visual impact. The heliostat field consists of 169 small size heliostats (1.9 m x 1.6 m). When all heliostats are aligned, it is possible to fulfil the specified flux above 2500 kW/m2 for at least 50 kW and an aperture of 16 cm, with a peak flux of 3000 kW/m2. A reliable road map for competitive drop-in fuel production from H2O, CO2, and solar energy will be established.

Figure 54: The SUN-to-LIQUID project develops an alternative fuel technology that promises unlimited renewable transportation fuel supply from water, CO2 and concentrated sunlight. The project, which is funded by the EU and Switzerland, can have important implications for the transportation sectors, especially for the long-haul aviation and shipping sectors, which are strongly dependent on hydrocarbon fuels (video credit: ARTTIC, Published on 12 June 2019)

SUN-to-LIQUID Field Test Project

The SUN-to-LIQUID four-year project, which finishes at the end of this year, is supported by the EU’s Horizon 2020 research and innovation program and the Swiss State Secretariat for Education, Research and Innovation. It involves leading European research organizations and companies in the field of solar thermochemical fuel research. In addition to ETH Zurich, IMDEA Energy and HyGear Technology & Services, other partners include the German Aerospace Center (DLR) and Abengoa Energía. Project coordinator Bauhaus Luftfahrt is also responsible for technology and system analyses and ARTTIC International Management Services is supporting the consortium with project management and communication. 74)

The preceding EU-project SOLAR-JET developed the technology and achieved the first-ever production of solar jet fuel in a laboratory environment. The SUN-to-LIQUID project scaled up this technology for on-sun testing at a solar tower. For that purpose, a unique solar concentrating plant was built at the IMDEA Energy Institute in Móstoles, Spain. “A sun-tracking field of heliostats concentrates sunlight by a factor of 2500 – three times greater than current solar tower plants used for electricity generation,” explains Manuel Romero of IMDEA Energy. This intense solar flux, verified by the flux measurement system developed by the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) makes it possible to reach reaction temperatures of more than 1500 ºC within the solar reactor positioned at the top of the tower. 75)


Figure 55: The sun-tracking heliostat field delivers radiative power to a solar reactor positioned at the top of the tower (image credit: Christophe Ramage ©ARTTIC 2019)

The solar reactor, developed by project partner ETH Zurich, produces synthesis gas, a mixture of hydrogen and carbon monoxide, from water and carbon dioxide via a thermochemical redox cycle. An on-site gas-to-liquid plant that was developed by the project partner HyGear processes this gas to kerosene.

DLR has many years of experience in the development of solar-thermal chemical processes and their components. In the SUN-to-LIQUID project, DLR was responsible for measuring the solar field and concentrated solar radiation, for developing concepts for optimized heat recovery and – as in the previous SOLAR-JET project – for computer simulations of the reactor and the entire plant. Researchers from the DLR Institute of Solar Research and the DLR Institute of Combustion Technology used virtual models to scale up the solar production of kerosene from the laboratory to a megawatt-scale plant and to optimize the design and operation of the plant. For SUN-to-LIQUID, DLR solar researchers developed a flux density measurement system that makes it possible to measure the intensity of highly concentrated solar radiation directly in front of the reactor with minimal interruption of its operation. This data is necessary to operate the plant safely and to determine the efficiency of the reactor.

Unlimited supply of sustainable fuel: Compared to conventional fossil-derived jet fuel, the net carbon dioxide emissions to the atmosphere can be reduced by more than 90 percent. Furthermore, since the solar energy-driven process relies on abundant feedstock and does not compete with food production, it can thus meet the future fuel demand at a global scale without the need to replace the existing worldwide infrastructure for fuel distribution, storage, and utilization.

Melting a satellite, a piece at a time

17 June 2019: Researchers took one of the densest parts of an Earth-orbiting satellite, placed it in a plasma wind tunnel then proceeded to melt it into vapor. Their goal was to better understand how satellites burn up during reentry, to minimize the risk of endangering anyone on the ground. 76)


Figure 56: A rod-shaped magnetorquer – made of an external carbon fiber reinforced polymer composite, with copper coils and an internal iron-cobalt core – being melted at thousands of degrees C inside a DLR plasma wind tunnel. This atmospheric reentry simulation was performed as part of ESA's 'Design for Demise' efforts to reduce the risk of reentering satellites reaching the ground (image credit: ESA/DLR)

Taking place as part of ESA’s Clean Space initiative, the fiery testing occurred inside a plasma wind tunnel, reproducing reentry conditions, at the DLR German Aerospace Center’s site in Cologne.

The test subject was a magnetorquer, designed to interact magnetically with Earth’s magnetic field to shift satellite orientation.

Figure 57: Melting a piece of a satellite. Researchers took one of the heaviest, bulkiest parts of an Earth-orbiting satellite, placed it in a plasma wind tunnel, then proceeded to melt it into vapor. Their goal was to better understand how satellites burn up during reentry, to minimize the risk of endangering anyone on the ground (video credit: ESA/DLR/Belstead Research)

The mysterious crystal that melts at two different temperatures

06 June 2019: In a little-known paper published in 1896, Emil Fischer—the German chemist who would go on to win the 1902 Nobel Prize in Chemistry for synthesizing sugars and caffeine—said his laboratory had produced a crystal that seemed to break the laws of thermodynamics. To his puzzlement, the solid form of acetaldehyde phenylhydrazone (APH) kept melting at two very different temperatures. A batch he produced on Monday might melt at 65 °C, while a batch on Thursday would melt at 100 °C. 77)

Colleagues and rivals at the time told him he must have made a mistake. Fischer didn’t think so. As far as he could tell, the crystals that melted at such different points were identical. A few groups in Britain and France repeated his work and got the same baffling results. But as those scientists died off, the mystery was forgotten, stranded in obscure academic journals published in German and French more than a century ago.

There it would probably have remained but for Terry Threlfall, an 84-year-old chemist at the University of Southampton, UK. Stumbling across Fischer’s 1896 paper in a library about a decade ago, Threlfall was intrigued enough to kick-start an international investigation of the mysterious crystal. Earlier this year in the journal Crystal Growth and Design, Threlfall and his colleagues published the solution: APH is the first recorded example of a solid that, when it melts, forms two structurally distinct liquids. Which liquid emerges comes down to contamination so subtle that it’s virtually undetectable. 78)


Figure 58: Crystals of acetaldehyde phenylhydrazone appear colorful when exposed to polarized light under a microscope (image credit: Terry Threlfall)

A forgotten mystery

he quest began in 2008 when Threlfall, a fluent speaker of German and a keen student of the history of science, was searching the pages of the 140-year-old Berichte der deutschen chemischen Gesellschaft for interesting solid-state work relevant to his research on second-order phase transitions. After learning of the long-lost puzzle from Fischer’s paper, Threlfall followed the reported recipe and found that his own samples of APH melted according to the same peculiar pattern. One batch melted at around 60 °C, the other at 90–95 °C.

As Fischer knew 125 years ago, the laws of thermodynamics do not allow such a molecule. If a pair of solids have different melting points, then they must be structurally distinct. Yet all the modern structural analysis techniques that Threlfall and some colleagues tried on Fischer’s compound confirmed the 19th-century claim. X-ray diffraction, nuclear magnetic resonance, IR spectroscopy: All showed the crystals that behaved so differently were identical.

“For two years we wondered whether to believe the evidence of our own eyes and think that we needed to rewrite the laws of the universe, or to believe thermodynamics and think that we were simply incompetent experimentalists,” Threlfall says.


Figure 59: Nobel laureate Emil Fischer works in his lab in 1904, eight years after describing a mysterious solid with multiple melting points (image credit: Nicola Perscheid)

Piecing together the puzzle

The first clue for solving the mystery came from the way APH crystals are prepared. The molecule (C8H10N2) is made up of a benzene ring attached to a pair of nitrogen atoms, one of which is attached to a hydrogen atom and a methyl group that can point either up or down. Chemists make APH by dissolving solid acetaldehyde (a precursor for many useful chemical reactions and a compound found naturally in fruit) into aqueous ethanol and adding drops of liquid phenylhydrazine (also first made and characterized by Fischer, who used it in his seminal studies of sugars). If the mixture is chilled and stirred, jagged flakes and then thicker chunks of APH crystals start to appear.


Figure 60: Terry Threlfall and his colleagues confirmed that there are low-melting-point and high-melting-point forms of APH. The y axis represents the heat absorbed in melting; the measured absorption is the area under the curve (image credit: Terry Threlfall)

According to reports from Fischer’s time, there were hints that impurities could play a role in the puzzling behavior of APH. Adding drops of an acid could steer the crystallization process toward the low-melting-point version of the molecule; with added alkali, the high-melting-point crystal would emerge. Threlfall confirmed that claim and found that he could convert between the two forms. The low-melting version could be made to melt at the higher temperature by exposing it to ammonia vapor. And the high-melting crystal just needed a whiff of acid to bring its melting point down.

That behavior seemed to suggest that the acid worked like rock salt does in lowering the melting point of water ice. But for salt to make a difference, a significant amount must be added—certainly enough to show up in a close examination of the ice’s structure. At as little as a thousandth of a molar equivalent, the quantities of acid or alkali needed to make the switch in APH were vanishingly small. Whatever contamination occurred did so with no detectable physical change to the crystal structure.

Threlfall got some important help from Hugo Meekes, a solid-state physicist at Radboud University in Nijmegen, the Netherlands. After hearing of a 2012 lecture that Threlfall had given about the conundrum, Meekes wondered if the solution might relate to a different, but equally curious, phenomenon called the disappearing polymorph problem. A scourge of drug companies, the problem manifests as the production of a solid that’s slightly but consequentially different from the desired product. The polymorphs are identical except for varying crystalline structures, which can give them different properties. In the late 1990s, for example, Abbott Laboratories learned that it had produced a less-soluble polymorph of its antiviral crystalline compound ritonavir.

The cause of disappearing polymorphs is disputed, but Meekes says it seems to come down to imperceptible contamination—perhaps a single molecule in the air can disrupt the process by seeding crystallization of the problematic form. “It sounds rather unbelievable, but it’s the only explanation,” he says. “We thought the situation with the APH must be something like this.”

But the APH case didn’t fit the pattern. The crystals of APH that melted at different temperatures weren’t polymorphs; they were identical. The researchers failed to find any other structural discrepancies either. For example, some molecules show different physical properties when their same atoms are arranged in different patterns, which is called isomerization. But both solid forms of APH contained the Z isomer, in which the methyl group points down.

Meekes too was stumped.

Enter Manuel Minas da Piedade, a solid-state physicist and thermodynamics researcher at the University of Lisbon, whom Threlfall met at a conference in 2011. After initially offering a hunch that led to another dead end, the Portuguese physicist did what many scientists do when faced with something that doesn’t add up: He went back to first principles. Because it is impossible for the same material to melt at different temperatures if the initial and final states are the same, he says, “either we don’t have the same crystal state, or the final state cannot be the same.”

Until then, all the tests performed by Threlfall and a growing number of interested colleagues had focused on solid APH, since differences in melting point typically stem from differences in the solid form. But, out of options on the solid front, in 2015 the researchers took a look at the liquids that emerged.

Back in the Netherlands, Meekes spun tiny tubes of the hot, molten APH in a solid-state NMR machine, once with the low-melting-point sample and once with the high-melting-point one. Occasional forays to temperatures higher than the delicate equipment’s 100 °C limit led to “frowning technicians,” Meekes says, but the risk was worth it. He discovered that the spectra of the two liquids were different. The same solid crystal was melting to form two liquids with distinct compositions—an unprecedented finding. “We think we have a clue as to what’s going on,” Meekes recalls telling Threlfall at a conference.


Figure 61: Study coauthors Simon Coles (left) and Terry Threlfall performed some of their APH detective work at the UK National Crystallography Service at the University of Southampton (image credit: Simon Coles)

Tricky liquid

The difference, Meekes, Threlfall, and colleagues soon found as they probed further, comes down to isomerization, but only in the liquid phase. Although solid APH consists of solely the Z isomer, liquid APH also contains E isomer, in which the methyl group points up. In the liquid state, with the molecules spaced farther apart and therefore with more room to maneuver, APH can flit between the two forms, and it does so until it finds the most stable mix. That turns out to be a blend of about one-third of the Z isomer and two-thirds of the E form.

The relative amounts of each isomer at equilibrium are determined by the molecules’ Gibbs free energies, a measure of their thermodynamic potential. As the difference in Gibbs energy increases, so does the ratio of one isomer to the other. What makes APH so unusual, Threlfall says, is that the optimal isomer combination for liquid APH doesn’t match that of the solid form. “That the [solid] crystal is composed entirely of Z molecules shows that these must have a more favorable packing,” he says.


Figure 62: An NMR analysis of liquid APH revealed structural differences between the low-melting-point (black line) and high-melting-point (red) forms (image credit: Terry Threlfall)

Tests showed that the high-melting solid crystal melted to a liquid that was also all Z. Then the Z-type molecules started to flip to E-type and continued until they hit that stable mix. But when the low-melting solid APH melted, it did so almost immediately to the stable mix of two-thirds E. The two liquids are different—and so the melting points are different—only because one represents an intermediate stage.

It was a melting-point suppression effect, just like salt and ice, but it was much larger than anyone on the team had thought possible. So what was behind it? Like the salt, they thought it must be an impurity. And like the disappearing polymorphs that plague the pharmaceutical industry, that impurity is too small to see or measure. Threlfall says hydrogen ions must be clinging to the surface of the solid crystal and catalyzing the shift from the Z form to the E form. To do so, those protons shift the electron density of the nitrogen atoms, which loosens the connection between nitrogen and carbon atoms in the APH molecules from a strong double bond to a weaker single one. The bond is therefore free to rotate, allowing a much more rapid switch between the Z and E forms.


Figure 63: Two isomers of APH. As a solid, molecules of APH take the Z form (left), in which the methyl group points down. But liquid APH also contains the E isomer, in which the methyl group points up (image credit: Leyla-Cann Söğütoğlu and Hugo Meekes)

With no acid present, the Z-form solid melts to Z-form liquid, and then this Z-form liquid starts the transition to E-form liquid until it reaches the stable 1:2 ratio. But when acid is there, the catalysis effect speeds the switch from Z form to E form, so much so that it happens as the solid melts.

Overall, the starting solid is the same, the finishing liquid is the same, and the amount of energy used is the same. The laws of the universe are safe. Gérard Coquerel, who works on thermodynamics and solid-state physics at the University of Rouen, France, and was not involved in the project, says it’s an important discovery that organic chemists and others who rely on melting points to help characterize compounds should take into account. “It shows that sometimes there is a need to be careful about what we consider as the melting point,” he says.

Fischer would have been delighted to see the answer, Threlfall says, and the 19th-century chemist would probably have understood it. Although the team’s work breaks genuinely new ground, Meekes cheerfully admits that the circumstances under which the melting-point suppression occurs are so specific that the research is unlikely to have useful applications. The team hasn’t even coined a name for the physical process by which identical solids can melt into distinct liquids. “If someone else wants to name it, then they can,” Threlfall says. “But if you ask me, the scientific literature is already cluttered with too many needless terms.”

Mission Control 'Saves Science'

17 May 2019: Every minute, ESA’s Earth observation satellites gather dozens of gigabytes of data about our planet – enough information to fill the pages on a 100-meter long bookshelf. Flying in low-Earth orbits, these spacecraft are continuously taking the pulse of our planet, but it's teams on the ground at ESA’s Operations Center in Darmstadt, Germany, that keep our explorers afloat. 79)


Figure 64: ESA has been dedicated to observing Earth from space ever since the launch of its first Meteosat weather satellite back in 1977. With the launch of a range of different types of satellites over the last 40 years, we are better placed to understand the complexities of our planet, particularly with respect to global change. Today’s satellites are used to forecast the weather, answer important Earth-science questions, provide essential information to improve agricultural practices, maritime safety, help when disaster strikes, and all manner of everyday applications (image credit: ESA)

From flying groups of spacecraft in complex formations to dodging space debris and navigating the ever-changing conditions in space known as space weather, ESA’s spacecraft operators ensure we continue to receive beautiful images and vital data on our changing planet.

Get in formation

Many Earth observation satellites travel in formation. For example, the Copernicus Sentinel-5P satellite follows behind the Suomi-NPP satellite (from the National Oceanic and Atmospheric Administration). Flying in a loose trailing formation, they observe parts of our planet in quick succession and monitor rapidly evolving situations. Together they can also cross-validate instruments on board as well as the data acquired.

ESA’s Earth Explorer Swarm satellites are another example of complex formation flying. On a mission to provide the best ever survey of Earth’s geomagnetic field, they are made up of three identical satellites flying in what is called a constellation formation.

Swarm’s individual satellites operate together under shared control in a synchronized manner, accomplishing the same objective of one giant – and more expensive – satellite.

“Formation flying has all the challenges of flying many single spacecraft, except with the added complexity that we need to maintain a regular distance between all of these high-speed and high-tech eyes on Earth,” explains Jose Morales Santiago, ESA’s Head of the Earth Observation Mission Operations Division. ”Every decision we make, every command we send, has to be the right one for each spacecraft – particularly when it comes to maneuvers. These must be planned properly so that they do not endanger companion satellites, while keeping a consistent configuration across the formation.”


Figure 65: Swarm is ESA's first Earth observation constellation of satellites. The three identical satellites are launched together on one rocket. Two satellites orbit almost side-by-side at the same altitude – initially at about 460 km, descending to around 300 km over the lifetime of the mission. The third satellite is in a higher orbit of 530 km and at a slightly different inclination. The satellites’ orbits drift, resulting in the upper satellite crossing the path of the lower two at an angle of 90° in the third year of operations. The different orbits along with satellites’ various instruments optimize the sampling in space and time, distinguishing between the effects of different sources and strengths of magnetism (image credit: ESA/AOES Medialab)

Saving science

Last year, ESA’s Earth observation missions performed a total of 28 ‘collision avoidance maneuvers’. These maneuvers saw operators send the orders to a spacecraft to get out of the way of an oncoming piece of space debris.

An impact with a fast-moving piece of space junk has the potential to destroy an entire satellite and in the process create even more debris. As a spacecraft ‘swerves’ to avoid collision, science instruments may need to be turned off to ensure their safety and avoid being contaminated by the thrusting engine.

Teams at mission control consider how to keep Europe’s fleet of Earth observers safe while maximizing the vital work they are able to do. Recently, they came up with an ingenious concept to ‘save science’ during such maneuvers of the Sentinel-5P satellite.

The Sentinel team quickly realized that during a collision avoidance maneuver they would have to suspend science collection for almost a day, because of the emergency firing of the thrusters.

“That’s a lot of data to miss out on. As the amount of space debris is currently increasing, this would be something we would need to do more and more often,” explains Pierre Choukroun, Sentinel-5P Spacecraft Operations Engineer, who came up with the fix. “So we designed and validated a new on-board function to enhance the spacecraft’s autonomy, such that the science data loss is reduced to a bare minimum. We are very much looking forward to securing more data for the science community in the near future!”

With this new strategy, the science instruments on Sentinel-5P would be shut off for around on hour compared with an entire day!

Sun protection

As if dodging bits of space debris weren’t enough for Europe’s Earth explorers, they also have to navigate the turbulent weather conditions in space.

Space weather refers to the environmental conditions around Earth due to the dynamic nature of our Sun. The constant mood swings of our star influence the functioning and reliability of our satellites in space, as well as infrastructure on the ground.

Figure 66: SOHO's view of the September 2017 solar flares. The Sun unleashed powerful solar flares on 6 September, one of which was the strongest in over a decade. An M-class flare was also observed two days earlier on 4 September. The flares were launched from a group of sunspots classified as active region 2673. The shaded disc at the center of the image is a mask in SOHO’s LASCO instrument that blocks out direct sunlight to allow study of the faint details in the Sun's corona. The white circle added within the disc shows the size and position of the visible Sun. (video credit: SOHO (ESA & NASA)

When the Sun is particularly active, it adds extra energy to Earth’s atmosphere, changing the density of the air at low-Earth orbits. Increased energy in the atmosphere means that satellites in this region experience more ‘drag’ – a force that acts in the opposite direction to the motion of the spacecraft, causing it to decrease in altitude.

Operators need this information to know when to perform maneuvers to “boost” the satellite’s speed in order to counter drag and keep it in its proper orbit.

This drag effect also changes the speed and position of space debris around Earth, meaning our understanding of the debris environment needs to be constantly updated in light of changing space weather.

“While Earth observation satellites monitor the weather on Earth, we have to stay aware of the changing weather in space,” says Thomas Ormston, Spacecraft Operations Engineer at ESA. “This is vital because understanding atmospheric drag is fundamental to predicting when we will be threatened by space debris and determining when and how big our spacecraft maneuvers need to be to keep delivering great science to our users.”

Space weather also impacts communication between ground stations and satellites due to changes in the upper atmosphere, the ionosphere, during solar events. Because of this, satellite operators avoid critical satellite operations like maneuvers or updates of the on board software during periods of high solar activity.


Figure 67: It’s difficult to comprehend the size and sheer power of our Sun, a churning ball of hot gas has a mass that is 1.3 million times larger than Earth, it dominates our Solar System. Unpredictable and temperamental, it blasts intense radiation and colossal amounts of energetic material in every direction, creating the ever-changing conditions in space known as 'space weather'. The solar wind is a constant stream of electrons, protons and stripped-down atoms emitted by the Sun, while coronal mass ejections are the Sun’s periodic outbursts of colossal clouds of solar plasma. The most extreme of these events disturb Earth’s protective magnetic field, creating geomagnetic storms at our planet. — These storms can cause serious problems for modern technological systems, disrupting or damaging satellites in space and the multitude of services – like navigation and telecoms – that rely on them, and blacking out power grids and radio communication. They can even serve potentially harmful doses of radiation to astronauts on future missions to the Moon or Mars (image credit: ESA)

Testing satellite marker designs

24 April 2019: Akin to landing lights for aircraft, ESA is developing infrared and phosphorescent markers for satellites, to help future space servicing vehicles rendezvous and dock with their targets. 80)

Developed by the Hungarian company Admatis (Advanced Materials in Space) as part of an ESA Clean Space project, these markers would offer robotic space servicing vehicles a steady target to home in on, providing critical information on the line of sight, distance and pointing direction of their target satellite.


Figure 68: Initial testing of these ‘Passive Emitting Material at end-of-life’ or PEMSUN markers took place at the end of March 2019 inside ESA’s GNC Rendezvous, Approach and Landing Simulator, part of the Agency's Orbital Robotics and Guidance, Navigation and Control Laboratory, at its ESTEC technical center in Noordwijk, the Netherlands (image credit: ESA)

“The idea itself is not new, but this is the first time we’ve manufactured and tested sample patches, cut into spacecraft multi-layer insulation covering,” comments ESA Clean Space trainee Sébastien Perrault. “For the design we’ve looked into one larger pattern incorporating smaller versions for when the space servicing vehicle comes close enough that its camera’s field of view is filled.

“These markers would be very useful during eclipse states for instance, when Earth obscures the Sun in low Earth orbit, to allow the chaser vehicle to stay fixed on its target, potentially in combination with radio tags.”

ESA is studying space servicing vehicles to carry out a wide range of roles in orbit, from refurbishment and refuelling to mission disposal at their end of life.


Figure 69: GRALS Testbed. This robotic arm, attached to a 33 m track is ESA's GRALS (GNC Rendezvous, Approach and Landing Simulator), is part of the Agency's Orbital Robotics and Guidance, Navigation and Control Laboratory. GRALS is used to simulate close approach and capture of uncooperative orbital targets, such as drifting satellites or to rendezvous with asteroids. It can also be used to test ideas for descending to surfaces, such as a lunar or martian landing (image credit: ESA, M. Grulich)

Legend to Figure 69: The moveable arm can be equipped with cameras to test vision-based software on a practical basis to close on a scale model of its target. Image-processing algorithms recognize various features on the surface of the model satellite seen here, and uses those features to calculate the satellite’s tumble, allowing the chaser to safely come closer. Alternatively, the robotic arm can be fitted with a gripper, to test out actually securing a target, or with altimeters or other range sensors.

Mirror array for LSS (Large Space Simulator)

17 April 2019: The mirror array (Figure 70) remains an integral element of ESA’s Large Space Simulator at the ESTEC Test Center in Noordwijk, the Netherlands. It is used to subject entire satellites to space-like conditions ahead of launch. At 15 m high and 10 m in diameter, the chamber is cavernous enough to accommodate an upended double decker bus. 81)

Satellites are lowered down through a topside hatch. Once the top and side hatches are sealed, high-performance pumps create a vacuum a billion times lower than standard sea level atmosphere, held for weeks at a time during test runs.

This mirror array is made of 121 separate hexagonal segments. Its task is to reflect a 6-m diameter beam of simulated sunlight into the chamber, at the same time as the walls are pumped full of –190°C liquid nitrogen, together recreating the extreme thermal conditions prevailing in orbit.

By re-orienting the individual segments a much tighter beam can be focused, helping to simulate higher intensity sunlight, such as the 10 solar constants experienced in the vicinity of Sun-scorched Mercury, for testing the ESA/JAXA BepiColombo mission.

The LSS has tested dozens of space missions over the years, including many of ESA's largest: as well as BepiColombo, the 8-ton Envisat and the 20-ton Automated Transfer Vehicle.


Figure 70: The giant 121-segment mirror array used to reflect simulated sunlight into the largest vacuum chamber in Europe seen being hoisted into position within ESA’s technical heart back in 1986 (image credit: ESA, CC BY-SA 3.0 IGO)

Cold plasma tested on ISS

10 April 2019: Low-temperature plasma – electrically charged gas – that was originally tested aboard the International Space Station is now being harnessed to kill drug-resistant bacteria and viruses that can cause infections in hospital. 82)

Professor Gregor Morfill of Germany’s Max Planck Institute for Extraterrestrial Physics made use of the ISS to investigate complex three-dimensional plasmas that Earth gravity would have flattened. His very first plasma chamber was installed aboard the Station back in 2001, by cosmonaut Sergei Krikalev. The latest fourth-generation follow-on is still running on the ISS to this day.

Plasmas are usually hot gases but Prof. Morfill’s team developed a method of generating room temperature ‘cold plasma’. Exposure to this forms small holes in the membranes of bacterial cells and destroy their DNA, while human cells are not so easily damaged.

So the idea was born to make use of cold plasma against bacteria in infected wounds without harming the patient. Initial treatment was for infected chronic wounds such as leg ulcers. Initial clinical trials showed significant reduction in bacterial burden of infected wounds, supporting healing and pain relief.

As a next step, new company terraplasma medical was set up to develop a smaller portable, battery-driven cold plasma medical device. The company has been supported through ESA’s Business Incubation Center Bavaria.

Starting this May, this ‘plasma care’ device will be evaluated in a medical trial across multiple German healthcare institutes.


Figure 71: Technology image of the week: Cold plasma tested aboard the International Space Station is now being harnessed against drug-resistant bacteria (image credit: Max Planck Institute for Extraterrestrial Physics)

3D printing and milling Athena optic bench

03 April 2019: Twin robotic arms work together as part of a project to construct what will be the largest, most complex object ever 3D printed in titanium: a test version of the 3-m diameter ‘optic bench’ at the heart of ESA’s Athena X-ray observatory. 83)


Figure 72: Technology image of the week: twin robotic arms work together to 3D print and mill a test version of the optical heart of ESA’s Athena X-ray observatory (image credit: Fraunhofer IWS)

- The first multi-axis robotic arm builds up each new layer of metal using a laser to melt titanium powder. The second robotic arm then immediately cuts away any imperfections using a cryogenically cooled milling tool. The bench itself is placed on a slowly moving 3.4 m diameter turntable.

- “ESA has teamed up with Germany’s Fraunhofer Institute for Material and Beam Technology for this exploratory activity,” explains ESA materials and processes engineer Johannes Gumpinger. “The final design of Athena’s optic bench is still to be decided, but if it will be built in titanium then its size and complexity is such that it could not be built in any other way.”

- Due to launch in 2031, ESA’s Athena mission will probe 10 to 100 times deeper into the cosmos than previous X-ray missions, to observe the very hottest, high-energy celestial objects.

- The mission requires entirely new X-ray optics technology, with stacks of ‘mirror modules’ arranged carefully to capture and focus high-energy X-rays.

- The optic bench aligns and secures around 750 mirror modules in a complex structure with many deep pockets that tapers out to a maximum height of 30 cm. Its overall shape needs to be precise down to a scale of a few tens of micrometers – or thousandths of a centimeter.

- “The optic bench’s complexity requires each addition to be milled immediately after printing,” comments André Seidel, overseeing the project at the Fraunhofer Institute for Material and Beam Technology. “Any subsequent modification could risk introducing contamination, weakening the space-quality titanium.

- “Similarly, the entire process has been designed to minimize any risk of contamination. The titanium powder is swept into the laser using the noble gas argon that also prevents any contamination with air. And the milling tool is kept cool using liquid carbon dioxide that evaporates as it warms up, preventing any harmful deposition on the freshly-laid metal surface.”

- Precision sensors immediately detect any out of tolerance elements for milling or more extensive repair – including milling away for reprinting.

- Smaller segments have been manufactured so far, with a 1.5 m diameter demonstrator optic bench set to follow. The full scale 3 m bench is expected to take about a year to produce.

- “It will be a huge task, taking a lot of time and energy,” adds Johannes. “But if we manage it, it will be the largest titanium object ever 3D printed – and the process will be available to manufacture other large parts, potentially in other metals.”

- The project is being supported through ESA’s Technology Development Element as part of the Agency’s Advanced Manufacturing initiative, harnessing novel materials and processes for the space sector.

- Last month more than 150 experts from all across Europe met at ESA’s technical heart in the Netherlands to share the latest results from ESA Advanced Manufacturing projects covering topics including 3D printing and the latest composite materials as well as friction stir-welding.

Figure 73: 3D printing titanium for Athena. A close-up view of laser melting being used to 3D print in titanium to produce test versions of the ‘optic bench’ at the heart of our Athena X-ray observatory. A multi-axis robotic arm is being used to produce the complex structure, including deep pockets to place optical mirror modules (video credit: Fraunhofer IWS)

Legend to Figure 73: “The essential technological achievement is the fact that 3D printing takes place under local protective gas shielding, without a protective gas chamber,” comments André Seidel, overseeing the project at the Fraunhofer Institute for Material and Beam Technology in Germany. “This is enabled by a specially-developed process head called COAXShield which uses the noble gas argon to sweep titanium powder into the path of the laser, in the process protecting the newly-printed titanium from contact with the atmosphere.”

This gas protection enables a rapid change between additive manufacturing – laser metal deposition with powder – and subtractive manufacturing – as cryogenically cooled milling tool operated by a second robotic arm removes surplus titanium.

The optic bench itself is placed on a slowly moving 3.4-m diameter turntable between the two robotic arms. The end goal of this ESA Technology Development Element project is to produce a 3-m diameter optical bench, but in principle the procedure can be applied to a wide variety of sizes.

“You can see the metallic bright surface of the titanium, reflecting the honeycomb structure of the protective gas nozzle,” adds André. “Taking account of this for laser melting was a very big challenge, and an absolute milestone in the project.”

Introduction of SmartSat architecture in spacecraft

20 March 2019: Lockheed Martin of Denver, CO, announced a new generation of space technology launching this year that will allow satellites to change their missions in orbit. Satellites that launched one, ten or even fifteen years ago largely have the same capability they had when they lifted off. That's changing with new architecture that will let users add capability and assign new missions with a software push, just like adding an app on a smartphone. This new tech, called SmartSat, is a software-defined satellite architecture that will boost capability for payloads on several pioneering nanosats ready for launch this year. 84)


Figure 74: Lockheed Martin SmartSat Infographic. Lockheed Martin's nanosatellite bus, the LM 50, will host the first SmartSat-enabled missions set for delivery this year (image credit: Lockheed Martin)

"Imagine a new type of satellite that acts more like a smartphone. Add a SmartSat app to your satellite in-orbit, and you've changed the mission," said Rick Ambrose, executive vice president of Lockheed Martin Space. "We are the first to deploy this groundbreaking technology on multiple missions. SmartSat will give our customers unparalleled resiliency and flexibility for changing mission needs and technology, and it unlocks even greater processing power in space."

This year Lockheed Martin is integrating SmartSat technology on ten programs and counting, including the Linus and Pony Express nanosats, which will be the first to launch. These are rapid-prototype, testbed satellites using internal research and development funding, ready for 2019 launches on the first LM 50 nanosatellite buses:

• The Linus project delivers two 12U cubesats performing a technology demonstration mission, validating SmartSat capabilities as well as 3D-printed spacecraft components.

Pony Express builds multiple 6U satellites destined for a low earth orbit and will space qualify state-of-the-art networking technologies. Pony Express 1 is a pathfinder for a software-defined payload that will test cloud computing infrastructure and was developed in nine months. Follow-on Pony Express missions will prove out RF-enabled swarming formations and space-to-space networking.

"SmartSat is a major step forward in our journey to completely transform the way we design, build and deliver satellites," said Ambrose. "The LM 50 bus is the perfect platform for testing this new, groundbreaking technology. We're self-funding these missions to demonstrate a number of new capabilities that can plug into any satellite in our fleet, from the LM 50 nanosat to our flagship LM 2100. And the same technology not only plugs into ground stations, improving space-ground integration, it will one day connect directly with planes, ships and ground vehicles, connecting front-line users to the power of space like never before."

Cyber security is at the core of this new technology. SmartSat-enabled satellites can reset themselves faster, diagnose issues with greater precision and back each other up when needed, significantly enhancing resiliency. Satellites can also better detect and defend against cyber threats autonomously, and on-board cyber defenses can be updated regularly to address new threats.

SmartSat uses a hypervisor to securely containerize virtual machines. It's a technology that lets a single computer operate multiple servers virtually to maximize memory, on-board processing and network bandwidth. It takes advantage of multi-core processing, something new to space. That lets satellites process more data in orbit so they can beam down just the most critical and relevant information—saving bandwidth costs and reducing the burden on ground station analysts, and ultimately opening the door for tomorrow's data centers in space.

SmartSat uses a high-power, radiation-hardened computer developed by the National Science Foundation's Center for Space, High-performance, and Resilient Computing, or SHREC. Lockheed Martin helps fund SHREC research, and in turn gains access to world-class technologies and student researchers.

Radiation tolerance of 2D material-based devices for space applications

15 March 2019: A new study from The Australian National University (ANU) has found a number of 2D materials can not only withstand being sent into space, but potentially thrive in the harsh conditions. It could influence the type of materials used to build everything from satellite electronics to solar cells and batteries - making future space missions more accessible, and cheaper to launch. 85) 86)


Figure 75: Tobias Vogl, ANU Research School of Physics & Engineering (image credit: Lannon Harley, ANU)

PhD candidate and lead author Tobias Vogl was particularly interested in whether the 2D materials could withstand intense radiation.

"The space environment is obviously very different to what we have here on Earth. So we exposed a variety of 2D materials to radiation levels comparable to what we expect in space," Mr Vogl said. "We found most of these devices coped really well. We were looking at electrical and optical properties and basically didn't see much difference at all."

During a satellite's orbit around the Earth, it is subjected to heating, cooling, and radiation. While there's been plenty of work done demonstrating the robustness of 2D materials when it comes to temperature fluctuations, the impact of radiation has largely been unknown - until now.

The ANU team carried out a number of simulations to model space environments for potential orbits. This was used to expose 2D materials to the expected radiation levels. They found one material actually improved when subjected to intense gamma radiation.

"A material getting stronger after irradiation with gamma rays - it reminds me of the hulk," Mr Vogl said. "We're talking about radiation levels above what we would see in space - but we actually saw the material become better, or brighter."

Mr Vogl says this specific material could potentially be used to detect radiation levels in other harsh environments, like near nuclear reactor sites.

"The applications of these 2D materials will be quite versatile, from satellite structures reinforced with graphene - which is five-times stiffer than steel - to lighter and more efficient solar cells, which will help when it comes to actually getting the experiment into space."

Among the tested devices were atomically thin transistors. Transistors are a crucial component for every electronic circuit. The study also tested quantum light sources, which could be used to form what Mr Vogl describes as the "backbone" of the future quantum internet.

"They could be used for satellite-based long-distance quantum cryptography networks. This quantum internet would be hacking proof, which is more important than ever in this age of rising cyber attacks and data breaches."

"Australia is already a world leader in the field of quantum technology," senior author Professor Ping Koy Lam said. "In light of the recent establishment of the Australian Space Agency, and ANU's own Institute for Space, this work shows that we can also compete internationally in using quantum technology to enhance space instrumentation."

Light from Exotic Crystal Semiconductor Could Lead to Better Solar Cells

15 March 2019: Scientists have found a new way to control light emitted by exotic crystal semiconductors, which could lead to more efficient solar cells and other advances in electronics, according to a Rutgers-led study in the journal Materials Today. 87) 88)


Figure 76: A conceptual view of a transistor device that controls photoluminescence (the light red cone) emitted by a hybrid perovskite crystal (the red box) that is excited by a blue laser beam after voltage is applied to an electrode (the gate), image credit: Vitaly Podzorov and Yaroslav Rodionov

Their discovery involves crystals called hybrid perovskites, which consist of interlocking organic and inorganic materials, and they have shown great promise for use in solar cells. The finding could also lead to novel electronic displays, sensors and other devices activated by light and bring increased efficiency at a lower cost to manufacturing of optoelectronics, which harness light.

The Rutgers-led team found a new way to control light (known as photoluminescence) emitted when perovskites are excited by a laser. The intensity of light emitted by a hybrid perovskite crystal can be increased by up to 100 times simply by adjusting voltage applied to an electrode on the crystal surface.

“To the best of our knowledge, this is the first time that the photoluminescence of a material has been reversibly controlled to such a wide degree with voltage,” said senior author Vitaly Podzorov, a professor in the Department of Physics and Astronomy in the School of Arts and Sciences at Rutgers University–New Brunswick. “Previously, to change the intensity of photoluminescence, you had to change the temperature or apply enormous pressure to a crystal, which was cumbersome and costly. We can do it simply within a small electronic device at room temperature.”

Semiconductors like these perovskites have properties that lie between those of the metals that conduct electricity and non-conducting insulators. Their conductivity can be tuned in a very wide range, making them indispensable for all modern electronics.

“All the wonderful modern electronic gadgets and technologies we enjoy today, be it a smartphone, a memory stick, powerful telecommunications and the internet, high-resolution cameras or supercomputers, have become possible largely due to the decades of painstaking research in semiconductor physics,” Podzorov said.

Understanding photoluminescence is important for designing devices that control, generate or detect light, including solar cells, LED lights and light sensors. The scientists discovered that defects in crystals reduce the emission of light and applying voltage restores the intensity of photoluminescence.

Hybrid perovskites are more efficient and much easier and cheaper to make than standard commercial silicon-based solar cells, and the study could help lead to their widespread use, Podzorov said. An important next step would be to investigate different types of perovskite materials, which may lead to better and more efficient materials in which photoluminescence can be controlled in a wider range of intensities or with smaller voltage, he said.

The study included lead author Hee Taek Yi in Rutgers’ Department of Physics and Astronomy and co-authors Assistant Research Professor Sylvie Rangan and Professor Robert A. Bartynski, department chair. Researchers at the University of Minnesota and University of Texas at Dallas contributed to the study.

Converting Wi-Fi Signals to Electricity with New 2-D Materials

• 8 March 2019: Devices that convert AC electromagnetic waves into DC electricity are known as “rectennas.” MIT Researchers have demonstrated a new kind of rectenna, that uses a flexible radio-frequency (RF) antenna to capture electromagnetic waves — including those carrying Wi-Fi. The antenna is connected to a novel device made out of a two-dimensional semiconductor just a few atoms thick, which converts the AC signal into a DC voltage. In this way, the battery-free device passively captures and transforms ubiquitous Wi-Fi (Wireless Fidelity) signals into useful DC power. Moreover, the device is flexible and can be fabricated in a roll-to-roll process to cover very large areas. 89) 90) 91)


Figure 77: Researchers from MIT and elsewhere have designed the first fully flexible, battery-free "rectenna" -- a device that converts energy from Wi-Fi signals into electricity — that could be used to power flexible and wearable electronics, medical devices, and sensors for the "internet of things" (image credit: Christine Daniloff)

- “What if we could develop electronic systems that we wrap around a bridge or cover an entire highway, or the walls of our office and bring electronic intelligence to everything around us? How do you provide energy for those electronics?” says paper co-author Tomás Palacios, a professor in the Department of Electrical Engineering and Computer Science and director of the MIT/MTL Center for Graphene Devices and 2D Systems in the Microsystems Technology Laboratories. “We have come up with a new way to power the electronics systems of the future — by harvesting Wi-Fi energy in a way that’s easily integrated in large areas — to bring intelligence to every object around us.”

- Promising early applications for the proposed rectenna include powering flexible and wearable electronics, medical devices, and sensors for the “internet of things.” Flexible smartphones, for instance, are a hot new market for major tech firms. In experiments, the researchers’ device can produce about 40 µW of power when exposed to the typical power levels of Wi-Fi signals (around 150 µW). That’s more than enough power to light up an LED or drive silicon chips.

- Another possible application is powering the data communications of implantable medical devices, says co-author Jesús Grajal, a researcher at the Technical University of Madrid. For example, researchers are beginning to develop pills that can be swallowed by patients and stream health data back to a computer for diagnostics.

- “Ideally you don’t want to use batteries to power these systems, because if they leak lithium, the patient could die,” Grajal says. “It is much better to harvest energy from the environment to power up these small labs inside the body and communicate data to external computers.”

- All rectennas rely on a component known as a “rectifier,” which converts the AC input signal into DC power. Traditional rectennas use either silicon or gallium arsenide for the rectifier. These materials can cover the Wi-Fi band, but they are rigid. And, although using these materials to fabricate small devices is relatively inexpensive, using them to cover vast areas, such as the surfaces of buildings and walls, would be cost-prohibitive. Researchers have been trying to fix these problems for a long time. But the few flexible rectennas reported so far operate at low frequencies and can’t capture and convert signals in gigahertz frequencies, where most of the relevant cell phone and Wi-Fi signals are.

- To build their rectifier, the researchers used a novel 2-D material called molybdenum disulfide (MoS2), which at three atoms thick is one of the thinnest semiconductors in the world. In doing so, the team leveraged a singular behavior of MoS2: When exposed to certain chemicals, the material’s atoms rearrange in a way that acts like a switch, forcing a phase transition from a semiconductor to a metallic material. The resulting structure is known as a Schottky diode, which is the junction of a semiconductor with a metal.

- “By engineering MoS2 into a 2-D semiconducting-metallic phase junction, we built an atomically thin, ultrafast Schottky diode that simultaneously minimizes the series resistance and parasitic capacitance,” says first author and EECS postdoc Xu Zhang, who will soon join Carnegie Mellon University as an assistant professor.

- Parasitic capacitance is an unavoidable situation in electronics where certain materials store a little electrical charge, which slows down the circuit. Lower capacitance, therefore, means increased rectifier speeds and higher operating frequencies. The parasitic capacitance of the researchers’ Schottky diode is an order of magnitude smaller than today’s state-of-the-art flexible rectifiers, so it is much faster at signal conversion and allows it to capture and convert up to 10 gigahertz of wireless signals.

- “Such a design has allowed a fully flexible device that is fast enough to cover most of the radio-frequency bands used by our daily electronics, including Wi-Fi, Bluetooth, cellular LTE, and many others,” Zhang says.

- The reported work provides blueprints for other flexible Wi-Fi-to-electricity devices with substantial output and efficiency. The maximum output efficiency for the current device stands at 40 percent, depending on the input power of the Wi-Fi input. At the typical Wi-Fi power level, the power efficiency of the MoS2 rectifier is about 30 percent. For reference, today’s rectennas made from rigid, more expensive silicon or gallium arsenide achieve around 50 to 60 percent.

- “This very nice teamwork from MIT demonstrates the first real application [of] atomically thin semiconductors for a flexible rectenna for energy harvesting,” says Philip Kim, a professor of physics and applied physics at Harvard University whose research focuses on 2-D materials. “I am amazed by the innovate approach that the team has set up to utilize the waste energy from RF power around us.”

- The team is now planning to build more complex systems and improve efficiency. The work was made possible, in part, by a collaboration with the Technical University of Madrid through the MIT International Science and Technology Initiatives (MISTI). It was also partially supported by the Institute for Soldier Nanotechnologies, the Army Research Laboratory, the National Science Foundation’s Center for Integrated Quantum Materials, and the Air Force Office of Scientific Research.

NICU (Neonatal Intensive Care Units)

• 28 February 2019: An interdisciplinary Northwestern University team (Chicago and Evanston, Illinois) has developed a pair of soft, flexible wireless body sensors that replace the tangle of wire-based sensors that currently monitor babies in hospitals’ neonatal intensive care units (NICU) and pose a barrier to parent-baby cuddling and physical bonding. 92) 93)

The team recently completed a collection of first human studies on premature babies at Prentice Women’s Hospital and the Ann & Robert H. Lurie Children’s Hospital in Chicago and concluded that the wireless infant sensors provided data as precise and accurate as that from traditional monitoring systems. The wireless patches also are gentler on a newborn’s fragile skin and allow for more skin-to-skin contact with the parent.

The study includes initial data from more than 20 babies who wore the wireless sensors alongside traditional monitoring systems, so Northwestern researchers could do a side-by-side, quantitative comparison. Since then, the team has conducted successful tests with more than 70 babies in the NICU.

The study — involving materials scientists, engineers, dermatologists and pediatricians, was published in the journal Science. 94)

The study includes initial data from more than 20 babies who wore the wireless sensors alongside traditional monitoring systems, so Northwestern researchers could do a side-by-side, quantitative comparison. Since then, the team has conducted successful tests with more than 70 babies in the NICU.

“We wanted to eliminate the rat’s nest of wires and aggressive adhesives associated with existing hardware systems and replace them with something safer, more patient-centric and more compatible with parent-child interaction,” says John A. Rogers, a bioelectronics pioneer, who led the technology development. “Our wireless, battery-free, skin-like devices give up nothing in terms of range of measurement, accuracy and precision — and they even provide advanced measurements that are clinically important but not commonly collected.”

Cutting the cords: The mass of wires that surround newborns in the NICU are often bigger than the babies themselves. Typically five or six wires connect electrodes on each baby to monitors for breathing, blood pressure, blood oxygen, heartbeat and more. Although these wires ensure health and safety, they constrain the baby’s movements and pose a major barrier to physical bonding during a critical period of development.

“We know that skin-to-skin contact is so important for newborns — especially those who are sick or premature,” says Paller, a pediatric dermatologist. “It’s been shown to decrease the risk of pulmonary complications, liver issues and infections. Yet, when you have wires everywhere and the baby is tethered to a bed, it’s really hard to make skin-to-skin contact.”

The benefits of the Northwestern team’s new technology reach beyond its lack of wires — measuring more than what’s possible with today’s clinical standards.

The dual wireless sensors monitor babies’ vital signs — heart rate, respiration rate and body temperature — from opposite ends of the body. One sensor lies across the baby’s chest or back, while the other sensor wraps around a foot. This strategy allows physicians to gather an infant’s core temperature as well as body temperature from a peripheral region.

“Differences in temperature between the foot and the chest have great clinical importance in determining blood flow and cardiac function,” Rogers says. “That’s something that’s not commonly done today.”

Figure 78: Northwestern team shows new wireless sensors (video credit: Northwestern University)


Figure 79: Dual wireless sensors – The chest sensor (left) measures 5 x 2.5 cm; the foot sensor (right) is 2.5 x 2 cm. Both sensors weigh as much as a raindrop (image credit: Northwestern)

Introduction of 5G communication connectivity

• March 2019: 5G mobile telecommunication standards stand for fifth-generation advancements made in the mobile communications field. These comprise packet switched wireless systems using orthogonal frequency division multiplexing (OFDM) with wide area coverage, high throughput at millimeter waves (10 mm to 1 mm) covering a frequency range of 30 GHz to 300 GHz, and enabling a 20 Mbit/s data rate to distances up to 2 km. The millimeter-wave band is the most effective solution to the recent surge in wireless Internet usage. These specifications are capable of providing ‘wireless world wide web’ (WWWW) applications. 95)

The WWWW allows a highly flexible network (flexible channel bandwidth between 5 and 20 MHz, optimally up to 40 MHz), and dynamic ad-hoc wireless network (DAWN). This technique employs intelligent antennae (e.g., switched beam antennae and adaptive array antennae) and the flexible modulation method, which helps in obtaining bidirectional high bandwidth, i.e., transfer of a large volume of broadcasting data in GB (giga bytes), sustaining more than 60,000 connections and providing 25 Mbit/s connectivity.

Users of 5G technology can download an entire film to their tablets or laptops, including 3D movies; they can download games and avail of remote medical services. With the advent of 5G, Piconet and Bluetooth technologies will become outdated. The 5G mobile phones would be akin to tablet PCs, where you could watch TV channels at HD clarity without any interruption.

Chronological evolution of mobile technologies: Although the 1G system (NMT) was introduced in 1981, 2G (GSM) started to come out in 1982, and 3G (W-CDMA)/FOMA first appeared in 2001, the complete development of these standards (e.g., IMT-2000 and UMTS) took almost 10 years. It is still unclear how much time it will take to launch the standards for 5G.

5G technology will ensure the convergence of networks, technologies, applications and services, and can serve as a flexible platform. Wireless carriers will have an opportunity to shorten their return-on-investment periods, improve operating efficiency and increase revenues. In short, this will change people’s lives in numerous ways.

In 2019, after years of hype about Gb (gigabit) speeds that will let you download full-length movies in mere seconds, 5G is close to becoming a reality. Last year gave us a taste of 5G as Verizon launched a home broadband service using the next-generation wireless technology and AT&T brought 5G service to a dozen cities. 96)

The fifth generation of connectivity, pithily called 5G, will be ready for prime time this year. Software is being tested, hardware is in the works, and carriers are readying their plans to flip the switch on their 5G network in the first half of 2019.

The new networking standard is not just about faster smartphones. Higher speeds and lower latency will also make new experiences possible in augmented and virtual reality, connected cars and the smart home — any realm where machines need to talk to each other constantly and without lag.

Where 5G Is Now:

The 3rd Generation Partnership Project, the standards body that writes the rules for wireless connectivity, agreed in late 2017 on the first specification for 5G. The Non-Standalone Specification of 5G New Radio standard covers 600 and 700 MHz bands and the 50 GHz millimeter-wave end of the spectrum. That agreement paved the way for hardware makers to start developing handsets with 5G modems inside. But the non-standalone specification applies to 5G developed with LTE as an anchor.

In June of 2018, the standards body completed the rules for standalone 5G. Network operators are now fine-tuning their software using equipment that complies with the completed standard.

"[The standard] really sets [the stage] for interoperable systems and field trials with operators in 2018, and it starts the clock for being able to build standards-compliant devices heading toward the last half of 2018 and early 2019 launches,” Qualcomm's Matt Branda, who oversees 5G marketing, told us last year.

It's important to note that 5G devices have to play nice with existing LTE networks, because in areas where 5G coverage will be spotty or nonexistent, the new radios will be optimized for available LTE connections. That's why the non-standalone specification came down first.

Companies such as Qualcomm and Intel are working on 5G modems that will fit into phones, cars, smart-home devices and other device forms that have yet to take shape. Those radios are in the midst of testing to make sure they're interoperable with network operators and infrastructure companies.

Space's part in the 5G revolution

The communications industry is in a period of unprecedented change, and consumers and enterprises across all regional and demographic sectors increasingly view mobile connectivity – and mobile broadband specifically – as an essential part of everyday life and business. 97)

5G represents an opportunity for the mobile industry to address that phenomenon. While the transition from 3G to 4G was an evolution in speed that paved the way for mobile broadband services, 5G is a revolution – an entirely new architecture that delivers exponential improvements in not only speed, but also latency, capacity, power consumption and number of connections supported. This opens the door to a broad new range of use cases, from enhanced mobile broadband to massive machine-type communications to ultra-low latency communications.

The Third Generation Partnership Project (3GPP), the industry association driving 5G development, is studying the challenges and has identified the value satellite coverage can bring to the enablement of 5G use cases, particularly mission-critical and industrial applications where ubiquitous coverage is crucial. By partnering with satellite operators, MNOs (Mobile Network Operators) can expand their footprint into regions that are difficult or impossible to serve via their terrestrial assets. Satellite represents a path for mobile network operators to expand their footprint and thus deliver on the promise of seamless, universal 5G coverage and services.

Figure 80: 5G, the next generation of communication services, will deliver ultra-fast speeds, connect all people and devices to the internet and minimize delays. It will affect everybody, changing the way we communicate, work and interact with technology. Space has an invaluable role to play in the 5G ecosystem. Satellites can extend, enhance, and provide reliability and security to 5G like no other, helping to deliver its promise of global, ubiquitous connectivity, with no noticeable difference to the end-user. ESA’s Satellite for 5G (S45G) program aims to promote the value-added benefits of space to 5G, by developing and demonstrating integrated satellite- and terrestrial-based 5G services, across multiple markets and use cases (video credit: ESA) 98)

NASA to Advance Unique 3D Printed Sensor Technology

• 15 February 2019: A NASA technologist is taking miniaturization to the extreme. Mahmooda Sultana won funding to advance a potentially revolutionary, nanomaterial-based detector platform. The technology is capable of sensing everything from minute concentrations of gases and vapor, atmospheric pressure and temperature, and then transmitting that data via a wireless antenna — all from the same self-contained platform that measures just two-by-three-inches in size. 99)

Under a $2 million technology development award, Sultana and her team at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, will spend the next two years advancing the autonomous multifunctional sensor platform. If successful, the technology could benefit NASA’s major science disciplines and efforts to send humans to the Moon and Mars. These tiny platforms could be deployed on planetary rovers to detect small quantities of water and methane, for example, or be used as monitoring or biological sensors to maintain astronaut health and safety.

Central to the effort, funded by NASA’s Space Technology Mission Directorate’s (STMD) Early Career Initiative (ECI) is a 3D printing system developed by Ahmed Busnina and his group at Northeastern University in Boston. The 3D printing system is like printers used to produce money or newspapers. However, instead of ink, the printer applies nanomaterials, layer-by-layer, onto a substrate to create tiny sensors. Ultimately, each is capable of detecting a different gas, pressure level or temperature.

Nanomaterials, such as carbon nanotubes, graphene, molybdenum disulfide and others, exhibit interesting physical properties. They are highly sensitive and stable at extreme conditions. They are also lightweight, hardened against radiation and require less power, making them ideal for space applications, Sultana said.

Under her partnership with Northeastern University, Sultana and her group will design the sensor platform, determining which combination of materials are best for measuring minute, parts-per-billion concentrations of water, ammonia, methane and hydrogen — all important in the search for life throughout the solar system. Using her design, Northeastern University will then use its Nanoscale Offset Printing System to apply the nanomaterials. Once printed, Sultana’s group will functionalize the individual sensors by depositing additional layers of nanoparticles to enhance their sensitivity, integrate the sensors with readout electronics, and package the entire platform.

The approach differs dramatically from how technologists currently fabricate multifunctional sensor platforms. Instead of building one sensor at a time and then integrating it to other components, 3D printing allows technicians to print a suite of sensors on one platform, dramatically simplifying the integration and packaging process.


Figure 81: Technologist Mahmooda Sultana holds an early iteration of an autonomous multifunctional sensor platform, which could benefit all of NASA's major scientific disciplines and efforts to send humans to the Moon and Mars (image credit: NASA/W. Hrybyk)

Also innovative is Sultana’s plan to print on the same silicon wafer partial circuitry for a wireless communications system that would communicate with ground controllers, further simplifying instrument design and construction. Once printed, the sensors and wireless antenna will be packaged onto a printed circuit board that holds the electronics, a power source, and the rest of the communications circuitry.

“The beauty of our concept is that we’re able to print all sensors and partial circuity on the same substrate, which could be rigid or flexible. We eliminate a lot of the packaging and integration challenges,” Sultana said. “This is truly a multifunctional sensor platform. All my sensors are on same chip, printed one after another in layers.”

Figure 82: Meet Mahmooda Sultana, Associate Branch Head, Systems Engineering Branch at NASA's Goddard Space Flight Center in Maryland. Mahmooda uses her love of math and puzzles to develop new technologies and miniaturize instruments for NASA missions (video credit: NASA)

Wide-Ranging Uses: The research picks up where other NASA-funded efforts ended. Under several previous efforts funded by Goddard’s Internal Research and Development Program and STMD’s Center Innovation Fund, Sultana and her team used the same technique to manufacture and demonstrate individual sensors made of carbon nanotubes and molybdenum disulfide, among other materials. “The sensors were found to be quite sensitive, down to low parts per million. With our ECI funding, we are targeting the instrument’s sensitivity to parts per billion by improving sensor design and structure,” Sultana said.

According to her, the project addresses NASA’s need for low-power, small, lightweight, and highly sensitive sensors that can distinguish important molecules other than by measuring the masses of a molecule’s fragments, which is how many missions currently detect molecules today using mass spectrometers.

In fact, the agency has acknowledged that future sensors need to detect minute concentrations of gases and vapors in the parts per billion level. Although mass spectrometers can detect a wide spectrum of molecules — particularly useful for unknown samples — they have difficulty distinguishing between some of the important species, such as water, methane and ammonia. “It’s also difficult to reach the parts per billion or beyond level with them,” she said.

“We’re really excited about the possibilities of this technology,” Sultana said. “With our funding, we can take this technology to the next level and potentially offer NASA a new way to create customized, multifunctional sensor platforms, which I believe could open the door to all types of mission concepts and uses. The same approach we use to identify gases on a planetary body also could be used to create biological sensors that monitor astronaut health and the levels of contaminants inside spacecraft and living quarters.”

New Geodesy Application for Emerging Atom-Optics Technology

• 20 December 2018: NASA and the Sunnyvale, California-based AOSense, Inc., have successfully built and demonstrated a prototype quantum sensor capable of obtaining highly sensitive and accurate gravity measurements — a stepping stone toward next-generation geodesy, hydrology, and climate-monitoring missions in space. 100)

The prototype sensor, developed in collaboration with NASA’s Goddard Space Flight Center in Greenbelt, Maryland, employs a revolutionary measurement technique called atom interferometry, which former U.S. Energy Department Secretary Steven Chu and his colleagues invented in the late 1980s. In 1997, Chu received the Nobel Prize in Physics for his work.

Since the discovery, researchers worldwide have attempted to build practical, compact, more sensitive quantum sensors, such as atom interferometers, that scientists could use in space-constrained areas, including spacecraft.


Figure 83: This image demonstrates the control that the Goddard-AOSense team has over the paths of atoms. In this demonstration, they manipulated the path to form the acronym, NASA (image credit: AOSense, Inc.)

With funding from NASA’s Small Business Innovation Research, Instrument Incubator, and Goddard’s Internal Research and Development programs, the Goddard-AOSense team developed an atom-optics gravity gradiometer primarily for mapping Earth’s time-varying gravitational field. Although Earth’s gravitational field changes for a variety of reasons, the most significant cause is a change in water mass. If a glacier or an ice sheet melts, this would affect mass distribution and therefore Earth’s gravitational field.

“Our sensor is smaller than competing sensors with similar sensitivity goals,” said Babak Saif, a Goddard optical physicist and collaborator in the effort. “Previous atom interferometer-based instruments included components that would literally fill a room. Our sensor, in dramatic comparison, is compact and efficient. It could be used on a spacecraft to obtain an extraordinary data set for understanding Earth’s water cycle and its response to climate change. In fact, the sensor is a candidate for future NASA missions across a variety of scientific disciplines.”

Atom interferometry, however, hinges on quantum mechanics, the theory that describes how matter behaves at sub-microscopic scales. Atoms, which are highly sensitive to gravitational signals, can also be cajoled into behaving like light waves. Special pulsing lasers can split and manipulate atom waves to travel different paths. The two atom waves will interact with gravity in a way that affects the interference pattern produced once the two waves recombine. Scientists can then analyze this pattern to obtain an extraordinarily accurate measure of the gravitational field.

In particular, the team is eying its quantum sensor as a potential technology to gather the type of data currently produced by NASA’s Gravity Recovery and Climate Experiment (GRACE) Follow-On mission. GRACE-FO is a two-satellite mission that has generated monthly gravity maps showing how mass is distributed and how it changes over time. Due to its extraordinary precision, the quantum sensor could eliminate the need for a two-satellite system or provide even greater accuracy if deployed on a second satellite in a complementary orbit, said Lee Feinberg, a Goddard optics expert also involved in the effort.

“With this new technology, we can measure the changes of Earth’s gravity that come from melting ice caps, droughts, and draining underground water supplies, greatly improving on the pioneering GRACE mission,” said John Mather, a Goddard scientist and winner of the Nobel Prize in Physics in 2006 for his work on NASA’s Cosmic Background Explorer that helped cement the big-bang theory of the universe.

The instrument, however, could be used to answer other scientific questions.

“We can measure the interior structure of planets, moons, asteroids, and comets when we send probes to visit them. The technology is so powerful that it can even extend the Nobel-winning measurements of gravitational waves from distant black holes, observing at a new frequency range,” Mather said, referring to the confirmation in 2015 of cosmic gravitational waves — literally, ripples in the fabric of space-time that radiate out in all directions, much like what happens when a stone is thrown into a pond. Since that initial confirmation, the Laser Interferometer Gravitational Wave Observatory and the European Virgo detectors have detected other events.

Since 2004, AOSense has developed quantum sensors and atomic clocks, with broad expertise and capabilities spanning all aspects of development and characterization of advanced sensors for precision navigation and timing. 101)


Figure 84: Real-world atomic sensors and other exacting applications require laser sources with specific size, environmental, and optical characteristics, placing unique constraints that most commercial laser systems do not meet. AOSense has developed a line of external cavity diode lasers (ECDLs) designed to meet these needs, offering narrow linewidth in a compact package (image credit: AOSense)

Our AOSense ECDL is built on a semi-monolithic bench with a cat’s-eye design for stable operation in demanding environments. The wavelength is factory-set to the desired user wavelength; no subsequent mechanical adjustment is required. A PZT may be used for ~GHz tuning in addition to current and temperature controls. Current wavelengths include alkali (767 nm, 780 nm, 852 nm) and alkaline earth (423 nm, 461 nm, 657 nm, 689 nm, 698 nm) transitions. Additional UV/blue models at 369 and 399 nm are currently in development. The flexible design is fully translatable to additional wavelengths. The output beam is circularized to optimize fiber coupling (not available for all wavelengths). The compact laser enclosure dimensions are only 7.5 x 3.8 x 2.8 cm.

New Standard for Wireless Transmission Speed at 100 Gbit/s

• 22 August 2018: Northrop Grumman Corporation and DARPA (Defense Advanced Research Projects Agency) have set a new standard for wireless transmission by operating a data link at 100 Gbit/s over a distance of 20 kilometers in a city environment. 102)

The blazing data rate is fast enough to download a 50 GB blue ray video in four seconds. The demonstration marked the successful completion of Northrop Grumman’s Phase 2 contract for DARPA’s 100 Gbit/s (100G) RF Backbone program.


Figure 85: Northrop Grumman and DARPA 100 Gbit/s link demonstrated over 20 km city environment on 19 January 2018 in Los Angeles (image credit: Northrop Grumman)

The 100G system is capable of rate adaptation on a frame by frame basis from 9 to 102 Gbit/s to maximize data rate throughout dynamic channel variations. Extensive link characterization demonstrated short-term error-free performance from 9 to 91 Gbit/s, and a maximum data rate of 102 Gbit/s with 1 erroneous bit received per ten thousand bits transmitted.

The successful data link results from the integration of several key technologies. The link operates at millimeter wave frequencies (in this case, 71-76 GHz and 81-86 GHz with 5 GHz of bandwidth, or data carrying capacity, and uses a bandwidth efficient signal modulation technique to transmit 25 Gbit/s data streams on each 5 GHz channel. To double the rate within the fixed bandwidth, the data link transmits dual orthogonally polarized signals from each antenna. Additionally, the link transmits from two antennas simultaneously (spatial multiplexing) and uses multiple-input-multiple-output (MIMO) signal processing techniques to separate the signals at the two receiving antennas, thus again doubling the data rate within the fixed bandwidth.

According to Louis Christen, director, research and technology, Northrop Grumman, “This dramatic improvement in data transmission performance could significantly increase the volume of airborne sensor data that can be gathered and reduce the time needed to exploit sensor data. Next generation sensors such as hyperspectral imagers typically collect data faster, and in larger quantity than most air-to-ground data links can comfortably transmit,” said Christen. “Without such a high data rate link data would need to be reviewed and analyzed after the aircraft lands.”

By contrast, a 100G data link could transmit high-rate data directly from the aircraft to commanders on the ground in near real time, allowing them to respond more quickly to dynamic operations.

The successful 100G ground demonstration sets the stage for the flight test phase of the 100G RF Backbone program. This next phase, which started in June, demonstrates the 100G air-to-ground link up to 100 Gbit/s over a 100 km range and extended ranges with lower data rates. The 100G hardware will be flown aboard the Proteus demonstration aircraft developed by Northrop Grumman subsidiary Scaled Composites.

Northrop Grumman’s 100G industry team includes Raytheon, which developed the millimeter wave antennas and related RF electronics and Silvus Technologies, which provides the key spatial multiplexing and MIMO signal processing technologies.


Figure 86: The 100G hardware will be flown aboard the Proteus demonstration aircraft developed by Northrop Grumman subsidiary Scaled Composites (image credit: Northrop Grumman)

Researchers develop novel process to 3D print one of the strongest materials on Earth

• 15 August 2018: Researchers from Virginia Tech (Blacksburg, VA) and Lawrence Livermore National Laboratory (Livermore, CA) have developed a novel way to 3D print complex objects of one of the highest-performing materials used in the battery and aerospace industries. 103)

Previously, researchers could only print this material, known as graphene, in 2D sheets or basic structures. But Virginia Tech engineers have now collaborated on a project that allows them to 3D print graphene objects at a resolution an order of magnitude greater than ever before printed, which unlocks the ability to theoretically create any size or shape of graphene.

Because of its strength - graphene is one of the strongest materials ever tested on Earth - and its high thermal and electricity conductivity, 3D printed graphene objects would be highly coveted in certain industries, including batteries, aerospace, separation, heat management, sensors, and catalysis.

Graphene is a single layer of carbon atoms organized in a hexagonal lattice. When graphene sheets are neatly stacked on top of each other and formed into a three-dimensional shape, it becomes graphite, commonly known as the “lead” in pencils.

Because graphite is simply packed-together graphene, it has fairly poor mechanical properties. But if the graphene sheets are separated with air-filled pores, the three-dimensional structure can maintain its properties. This porous graphene structure is called a graphene aerogel.

“Now a designer can design three-dimensional topology comprised of interconnected graphene sheets,” said Xiaoyu “Rayne” Zheng, assistant professor with the Department of Mechanical Engineering in the College of Engineering and director of the Advanced Manufacturing and Metamaterials Lab. “This new design and manufacturing freedom will lead to optimization of strength, conductivity, mass transport, strength, and weight density that are not achievable in graphene aerogels.”

Zheng, also an affiliated faculty member of the Macromolecules Innovation Institute, has received grants to study nanoscale materials and scale them up to lightweight and functional materials for applications in aerospace, automobiles, and batteries.

Previously, researchers could print graphene using an extrusion process, sort of like squeezing toothpaste, but that technique could only create simple objects that stacked on top of itself. “With that technique, there’s very limited structures you can create because there’s no support and the resolution is quite limited, so you can’t get freeform factors,” Zheng said. “What we did was to get these graphene layers to be architected into any shape that you want with high resolution.”

This project began three years ago when Ryan Hensleigh, lead author of the article and now a third-year Macromolecular Science and Engineering Ph.D. student, began an internship at the LLNL (Lawrence Livermore National Laboratory in Livermore), California. Hensleigh started working with Zheng, who was then a member of the technical staff at Lawrence Livermore National Laboratory. When Zheng joined the faculty at Virginia Tech in 2016, Hensleigh followed as a student and continued working on this project.

To create these complex structures, Hensleigh started with graphene oxide, a precursor to graphene, crosslinking the sheets to form a porous hydrogel. Breaking the graphene oxide hydrogel with ultrasound and adding light-sensitive acrylate polymers, Hensleigh could use projection micro-stereolithography to create the desired solid 3D structure with the graphene oxide trapped in the long, rigid chains of acrylate polymer. Finally, Hensleigh would place the 3D structure in a furnace to burn off the polymers and fuse the object together, leaving behind a pure and lightweight graphene aerogel.

“It’s a significant breakthrough compared to what’s been done,” Hensleigh said. “We can access pretty much any desired structure you want.”

The key finding of this work, which was recently published with collaborators at LLNL in the journal Materials Horizons, is that the researchers created graphene structures with a resolution an order of magnitude finer than ever printed. Hensleigh said other processes could print down to 100 µm, but the new technique allows him to print down to 10 µm in resolution, which approaches the size of actual graphene sheets. 104)

“We’ve been able to show you can make a complex, three-dimensional architecture of graphene while still preserving some of its intrinsic prime properties,” Zheng said. “Usually when you try to 3D print graphene or scale up, you lose most of their lucrative mechanical properties found in its single sheet form.”


Figure 87: (A) Four ‘‘Green’’ MAG parts of differing unit-cell structures before pyrolysis from left to right octet-truss, gyroid, cubo-octahedron, and Kelvin foam; (B) optical image of pyrolyzed gyroid; (C) SEM image of pyrolyzed gyroid with intricate overhang structures (D) zoomed image of pyrolyzed gyroid in ‘‘C’’; (E) optical image of pyrolyzed MAG octet-truss, of a different design than shown in ‘‘A’’ supported by a single strawberry blossom filament; (F) SEM image of pyrolyzed octet-truss MAG in ‘‘E’’; (G) zoomed image of octet-truss in ‘‘E’’ showing the very high 10 µm resolution achievable in our process (image credit: 3D print graphene study team of Virginia Tech and Lawrence Livermore National Laboratory)

Prototype nuclear battery packs 10 times more power

• May 2018: Russian researchers from the Moscow Institute of Physics and Technology (MIPT), the Technological Institute for Superhard and Novel Carbon Materials (TISNCM), and the National University of Science and Technology, MISIS, have optimized the design of a nuclear battery generating power from the beta decay of nickel-63 (63Ni), a radioactive isotope. Their new battery prototype packs about 3,300 mW-hours of energy per gram, which is more than in any other nuclear battery based on 63Ni, and 10 times more than the specific energy of commercial chemical cells. The paper was published in the journal Diamond and Related Materials. 105) 106)


Figure 88: A nuclear battery (image credit: Elena Khavina/MIPT)

Ordinary batteries powering clocks, flashlights, toys, and other electrical devices use the energy of so-called redox chemical reactions in which electrons are transferred from one electrode to another via an electrolyte. This gives rise to a potential difference between the electrodes. If the two battery terminals are then connected by a conductor, electrons start flowing to remove the potential difference, generating an electric current. Chemical batteries, also known as galvanic cells, are characterized by a high power density—that is, the ratio between the power of the generated current and the volume of the battery. However, chemical cells discharge in a relatively short time, limiting their applications in autonomous devices. Some of these batteries, called accumulators, are rechargeable, but even they need to be replaced for charging. This may be dangerous, as in the case of a cardiac pacemaker, or even impossible, if the battery is powering a spacecraft.

Fortunately, chemical reactions are just one of the possible sources of electric power. In 1913, Henry Moseley invented the first power generator based on radioactive decay. His nuclear battery consisted of a glass sphere silvered on the inside with a radium emitter mounted at the center on an isolated electrode. Electrons resulting from the beta decay of radium caused a potential difference between the silver film and the central electrode. However, the idle voltage of the device was way too high—tens of kV (kilovolt)—and the current was too low for practical applications.

In 1953, Paul Rappaport proposed the use of semiconducting materials to convert the energy of beta decay into electricity. Beta particles—electrons and positrons—emitted by a radioactive source ionize atoms of a semiconductor, creating uncompensated charge carriers. In the presence of a static field of a p-n structure, the charges flow in one direction, resulting in an electric current. Batteries powered by beta decay came to be known as betavoltaics. The chief advantage of betavoltaic cells over galvanic cells is their longevity. Radioactive isotopes used in nuclear batteries have half-lives ranging from tens to hundreds of years, so their power output remains nearly constant for a very long time. Unfortunately, the power density of betavoltaic cells is significantly lower than that of their galvanic counterparts. Despite this, betavoltaics were used in the 1970s to power cardiac pacemakers, before being phased out by cheaper lithium-ion batteries, even though the latter have shorter lifetimes.

Betavoltaic power sources should not be confused with RTGs (Radioisotope Thermoelectric Generators), which are also called nuclear batteries, but operate on a different principle. Thermoelectric cells convert the heat released by radioactive decay into electricity using thermocouples. The efficiency of RTGs is only several percent and depends on temperature. But owing to their longevity and relatively simple design, thermoelectric power sources are widely used to power spacecraft such as the New Horizons probe and Mars rover Curiosity. RTGs were previously used on unmanned remote facilities such as lighthouses and automatic weather stations. However, this practice was abandoned, because used radioactive fuel was hard to recycle and leaked into the environment.

A research team led by Vladimir Blank, the director of TISNCM and chair of nanostructure physics and chemistry at MIPT, came up with a way of increasing the power density of a nuclear battery almost tenfold. The physicists developed and manufactured a betavoltaic battery using nickel-63 as the source of radiation and Schottky barrier-based diamond diodes for energy conversion. The prototype battery achieved an output power of about 1 µW (microwatt), while the power density per cubic centimeter was 10 µW, which is enough for a modern artificial pacemaker. Nickel-63 has a half-life of 100 years, so the battery packs about 3,300 mW-hours of power per 1 gram—10 times more than electrochemical cells.


Figure 89: A nuclear battery design (image credit: V. Bormashov et al./Diamond and Related Materials)

The nuclear battery prototype consisted of 200 diamond converters interlaid with nickel-63 and stable nickel foil layers (Figure 89). The amount of power generated by the converter depends on the thickness of the nickel foil and the converter itself, because both affect how many beta particles are absorbed. Currently available prototypes of nuclear batteries are poorly optimized, since they have excessive volume. If the beta radiation source is too thick, the electrons it emits cannot escape it. This effect is known as self-absorption. However, as the source is made thinner, the number of atoms undergoing beta decay per unit time is proportionally reduced. Similar reasoning applies to the thickness of the converter.

The goal of the researchers was to maximize the power density of their nickel-63 battery. To do this, they numerically simulated the passage of electrons through the beta source and the converters. It turned out that the nickel-63 source is at its most effective when it is 2 µm thick, and the optimal thickness of the converter based on Schottky barrier diamond diodes is around 10 µm.

Manufacturing technology:

The main technological challenge was the fabrication of a large number of diamond conversion cells with complex internal structure. Each converter was merely tens of micrometers thick, like a plastic bag in a supermarket. Conventional mechanical and ionic techniques of diamond thinning were not suitable for this task. The researchers from TISNCM and MIPT developed a unique technology for synthesizing thin diamond plates on a diamond substrate and splitting them off to mass-produce ultrathin converters.

The team used 20 thick boron-doped diamond crystal plates as the substrate. They were grown using the temperature gradient technique under high pressure. Ion implantation was used to create a 100 nm thick defective, "damaged" layer in the substrate at the depth of about 700 nm. A boron-doped diamond film 15 µm thick was grown on top of this layer using chemical vapor deposition. The substrate then underwent high-temperature annealing to induce graphitization of the buried defective layer and recover the top diamond layer. Electrochemical etching was used to remove the damaged layer. Following the separation of the defective layer by etching, the semi-finished converter was fitted with ohmic and Schottky contacts.

All converters were connected in parallel in a stack as shown in Figure 89. The technology for rolling 2 µm thick nickel foil was developed at the Research Institute and Scientific Industrial Association LUCH. The battery was sealed with epoxy.

The prototype battery is characterized by the current-voltage curve shown in Figure 91. The open-circuit voltage and the short-circuit current are 1.02 V and 1.27 µA, respectively. The maximum output power of 0.93 µW is obtained at 0.92 volts. This power output corresponds to a specific power of about 3,300 mW-hours per gram, which is 10 times more than in commercial chemical cells or the previous nickel-63 nuclear battery designed at TISNCM.


Figure 90: Photo of a prototype nuclear battery (image credit: Technological Institute for Superhard and Novel Carbon Materials)

In 2016, Russian researchers from MISIS had already presented a prototype betavoltaic battery based on nickel-63. Another working prototype, created at TISNCM and LUCH, was demonstrated at Atomexpo 2017. It had a useful volume of 1.5 cm3.

The main setback in commercializing nuclear batteries in Russia is the lack of nickel-63 production and enrichment facilities. However, there are plans to launch nickel-63 production on an industrial scale by mid-2020s.

There is an alternative radioisotope for use in nuclear batteries: Diamond converters could be made using radioactive carbon-14, which has an extremely long half-life of 5,700 years. Work on such generators was earlier reported by physicists from the University of Bristol (UK).


Figure 91: Prototype battery is characterized by the current-voltage curve (image credit: Study Team)

Nuclear batteries: Prospects:

The work reported in this story has prospects for medical applications. Most state-of-the-art cardiac pacemakers are over 10 cm3 in size and require about 10 µW of power. This means that the new nuclear battery could be used to power these devices without any significant changes to their design and size. "Perpetual pacemakers" whose batteries need not be replaced or serviced would improve the quality of life of patients.

The space industry would also greatly benefit from compact nuclear batteries. In particular, there is a demand for autonomous wireless external sensors and memory chips with integrated power supply systems for spacecraft. Diamond is one of the most radiation-proof semiconductors. Since it also has a large bandgap, it can operate in a wide range of temperatures, making it the ideal material for nuclear batteries powering spacecraft.

The researchers are planning to continue their work on nuclear batteries. They have identified several lines of inquiry that should be pursued. Firstly, enriching nickel-63 in the radiation source would proportionally increase battery power. Secondly, developing a diamond p-i-n structure with a controlled doping profile would boost voltage and therefore could increase the power output of the battery at least by a factor of three. Thirdly, enhancing the surface area of the converter would increase the number of nickel-63 atoms on each converter.

TISNCM Director Vladimir Blank, who is also chair of nanostructure physics and chemistry at MIPT, commented on the study: "The results so far are already quite remarkable and can be applied in medicine and space technology, but we are planning to do more. In the recent years, our institute has been rather successful in the synthesis of high-quality doped diamonds, particularly those with n-type conductivity. This will allow us to make the transition from Schottky barriers to p-i-n structures and thus achieve three times greater battery power. The higher the power density of the device, the more applications it will have. We have decent capabilities for high-quality diamond synthesis, so we are planning to utilize the unique properties of this material for creating new radiation-proof electronic components and designing novel electronic and optical devices."

The Kilopower Project of NASA

17 January 2018: When astronauts someday venture to the Moon, Mars and other destinations, one of the first and most important resources they will need is power. A reliable and efficient power system will be essential for day-to-day necessities, such as lighting, water and oxygen, and for mission objectives, like running experiments and producing fuel for the long journey home. 107)

That’s why NASA is conducting experiments on Kilopower, a new power source that could provide safe, efficient and plentiful energy for future robotic and human space exploration missions. This pioneering space fission power system could provide up to 10 kW of electrical power — enough to run two average households — continuously for at least ten years. Four Kilopower units would provide enough power to establish an outpost.

Currently, power is usually generated in space by solar arrays that convert the Sun’s energy into electricity or by radioisotope power systems that convert the heat from naturally decaying plutonium238 into electricity. Solar or radioisotope power systems may be impractical for future NASA missions to places where sunlight is dim or unavailable, and where more than a few hundreds of watts of power are needed. 108)

Fission power from nuclear reactors could provide abundant energy anywhere that humans or our robotic science probes might go. Fission, the splitting of an atom’s nucleus, releases a great amount of heat energy: 1 pound of uranium fuel can produce as much energy as about 3 million pounds of burnable coal. With such a high energy density, fission power systems present an ideal solution for space missions that require large amounts of power, especially where sunlight is limited or not available.

Technology Demonstration Goal: Because of fission power’s great potential for space exploration, the NASA Space Technology Mission Directorate’s Game Changing Development (GCD) Program is funding the Kilopower project, an effort led by NASA’s Glenn Research Center to demonstrate space fission power systems technology. Building on prior work by a joint NASA and Department of Energy team, the project’s main goal is to assemble and test an experimental prototype of a space fission power system. In 2012, Los Alamos National Laboratory and NASA Glenn demonstrated how an innovative, small-scale heat pipe-cooled fission reactor could provide electrical power using Stirling power conversion. This proof of physics demonstration provided the basis for the Kilopower project, the goal of which is to demonstrate the readiness of a monolithic-core heat-pipe reactor power system for use in NASA’s exploration missions.

Accomplishing the Goal: The NS (Nuclear Systems) Kilopower project is a partnership between NASA and the Department of Energy’s National Nuclear Security Administration (NNSA). Together, NASA and NNSA have designed and developed a 1 kWe reactor prototype with technology that is relevant for systems up to 10 kWe. It consists of a highly enriched uranium core built by NNSA, heat pipes provided by Advanced Cooling Technologies through a NASA Small Business Innovation Research contract, and Stirling generators provided by Sunpower, Inc. The core is a solid block of a uranium alloy, and heat pipes are clamped around the core to transfer heat to Stirling power conversion units to generate electrical power. Much smaller than terrestrial nuclear plants, Kilopower systems are small enough to be demonstrated here on Earth in existing facilities at the Nevada National Security Site.

Space Exploration Uses for Fission Power: The Kilopower project was initiated because NASA mission planning includes exploration of places in the solar system—such as deep space beyond Jupiter’s orbit and the surfaces of Earth’s moon and Mars—where power generation from sunlight is difficult and power from radioisotope systems is limited by the fuel supply. For human exploration, multiple 10 kWe Kilopower systems could provide the 40 kWe initially estimated to be needed by NASA’s preliminary concepts for a human outpost, with the ability to add power as the outpost grows. For robotic exploration, 1 kWe Kilopower units enable abundant, reliable power for science and communications, and the potential to field deep space missions based on science return while conserving the limited supply of radioisotope fuel for its best opportunities. Characteristics of fission power that make it so beneficial for Mars outposts and deep space robotics also apply to other space missions. Nuclear fission systems could be scaled up to power nuclear electric propulsion vehicles to efficiently transport heavy cargo beyond Mars, and they could potentially shorten crewed trip times to Mars and other distant planets.

Game Changing Development Program: The Game Changing Development (GCD) program is part of NASA’s Space Technology Mission Directorate. The GCD program aims to advance exploratory concepts and deliver technology solutions that enable new capabilities or radically alter current approaches.

Unlike previous technologies, the Kilopower reactor is simple, inexpensive and relies on fuels and technologies that are already well understood, NASA officials said. It uses active nuclear fission, like a conventional nuclear reactor, which will enable it to harvest far more energy from its uranium alloy core than an RTG (Radioisotope Thermoelectric Generator) could. A heat pipe clamped around the reactor core will transfer heat to the unit's power generators: small Stirling engines, a technology that was developed in 1816. The engines are simple pistons that convert heat into motion, which is then converted to electricity. The reactor will radiate excess heat from an umbrella-like cooling array.


Figure 92: The Kilopower reactor will take advantage of active nuclear fission and Stirling engines — simple devices that convert heat into motion — to increase its efficiency compared with previous nuclear power sources (image credit: NASA)

KRUSTY (Kilopower Reactor Using Stirling Technology) Experiment Results

• On 2 May 2018, NASA announced the results of the KRUSTY experiment during a news conference at GRC (Glenn Research Center). The Kilopower experiment was conducted November 2017 through March 2018 at the Nevada National Security Site (NNSS). 109)

- NASA and the Department of Energy’s National Nuclear Security Administration (NNSA) have successfully demonstrated a new nuclear reactor power system that could enable long-duration crewed missions to the Moon, Mars and destinations beyond.

- “Safe, efficient and plentiful energy will be the key to future robotic and human exploration,” said Jim Reuter, NASA’s acting associate administrator for the Space Technology Mission Directorate (STMD) in Washington. “I expect the Kilopower project to be an essential part of lunar and Mars power architectures as they evolve.”

- Kilopower is a small, lightweight fission power system capable of providing up to 10 kW of electrical power - enough to run several average households - continuously for at least 10 years. Four Kilopower units would provide enough power to establish an outpost.

- The prototype power system uses a solid, cast uranium-235 reactor core, about the size of a paper towel roll. Passive sodium heat pipes transfer reactor heat to high-efficiency Stirling engines, which convert the heat to electricity.

- According to David Poston, the chief reactor designer at NNSA’s Los Alamos National Laboratory, the purpose of the recent experiment in Nevada was two-fold: to demonstrate that the system can create electricity with fission power, and to show the system is stable and safe no matter what environment it encounters. “We threw everything we could at this reactor, in terms of nominal and off-normal operating scenarios and KRUSTY passed with flying colors,” said Poston.

- The Kilopower team conducted the experiment in four phases. The first two phases, conducted without power, confirmed that each component of the system behaved as expected. During the third phase, the team increased power to heat the core incrementally before moving on to the final phase. The experiment culminated with a 28-hour, full-power test that simulated a mission, including reactor startup, ramp to full power, steady operation and shutdown.

- Throughout the experiment, the team simulated power reduction, failed engines and failed heat pipes, showing that the system could continue to operate and successfully handle multiple failures.

- “We put the system through its paces,” said Gibson. “We understand the reactor very well, and this test proved that the system works the way we designed it to work. No matter what environment we expose it to, the reactor performs very well.”

- The Kilopower project is developing mission concepts and performing additional risk reduction activities to prepare for a possible future flight demonstration. The project will remain a part of the STMD’s Game Changing Development program with the goal of transitioning to the Technology Demonstration Mission program in Fiscal Year 2020.

- Such a demonstration could pave the way for future Kilopower systems that power human outposts on the Moon and Mars, including missions that rely on In-situ Resource Utilization to produce local propellants and other materials.


Figure 93: Artist's concept of new fission power system on the lunar surface (image credit: NASA)

Testing: As of September 2017 a test reactor has been constructed, called KRUSTY (Kilopower Reactor Using Stirling Technology). It is designed to produce up to 1 kW of electric power and is about 1.9 m tall. The goal of the KRUSTY experiment is to closely match the operational parameters that would be required in NASA deep space missions. The prototype Kilopower uses a solid, cast uranium-235 reactor core, about the size of a paper towel roll. Reactor heat is transferred via passive sodium heat pipes, with the heat being converted to electricity by Stirling engines. 110)

- Testing to gain TRL 5 started in November 2017 and continued into 2018. The first tests used a depleted uranium core manufactured by Y-12 National Security Complex in Tennessee. The depleted uranium core is exactly the same material as the regular high-enriched uranium (HEU) core with the only difference being the level of uranium enrichment. The testing of KRUSTY represents the first time the United States has conducted ground tests on any space reactor since the SNAP-10A experimental reactor was tested and eventually flown in 1965.


Figure 94: Marc Gibson, Kilopower lead engineer, and Jim Sanzi, Vantage Partners, install hardware on the Kilopower assembly at the Nevada National Security Site in March 2018 (image credit: NASA) 111)

Top Tomatoes thanks to Mars Missions

11 April 2018: Inspired by an Obama speech in 2010 on human missions to Mars, the Dutch company Groen Agro Control started investigating the best way to grow and fertilize plants in space, and whether that could also lead to improving the growth of vegetables on Earth. 112)

“In space, you can fertilize plants only with the minerals you take with you, but you still want them to produce the best possible crops,” explains the company’s Lex de Boer. “Ideally, you would also use the water that evaporates from the plants as a source of drinking water, with the minimum amount of purification. That means you have to apply doses of each mineral extremely carefully, so that as little as possible ends up unused in the drain water.”

To study this, the company built an enclosed system in which tomato and pepper plants received doses of 16 different minerals, looking at how the uptake of each mineral correlated with growth.

In 2013, the company met an ESA team at the Space-MATCH event organized by Netherlands Organization for Applied Scientific Research TNO and ESA’s Technology Transfer Office to bring ESA engineers and industry together to exchange knowhow. Here, the company was inspired to spin off a smart service helping horticulturalists to fertilize plants better on Earth.


Figure 95: Next time you eat a tomato or sweet pepper, take a closer look, because there’s a good chance that its healthy appearance is thanks to one of former US President Barack Obama’s speeches and ESA research for sending people on long-duration space missions (image credit: M. Barel (CC BY-NC 2.0))

To study the optimal dosing of minerals for growing tomato and pepper plants, Dutch Groen Agro Control built an enclosed system in which the plants received doses of 16 different minerals. The doses of each mineral were extremely carefully controlled, so that as little as possible ends up unused in the drain water.


Figure 96: Dosing of minerals for growing tomato and pepper plants (image credit: Groen Agro Control)

Triggered by the requirement to provide for the needs of humans on long missions to the Moon and Mars, ESA’s MELiSSA (Micro-Ecological Life Support System Alternative) project focuses on a ‘closed’ life support system, where all supplies are reused and recycled. So, for example, organic waste and carbon dioxide should be entirely converted into oxygen, water and food.

“MELiSSA recognizes that we have to develop a self-supporting system for long missions, as astronauts will not be able to rely on regular deliveries of supplies, especially as they move further from Earth,” explains ESA’s Christel Paille. “One key issue is food and water supplies. Astronauts will need to grow their own food with limited resources, and reclaim as much water as possible from that growth cycle. Hence it’s vital that we develop a scheme that tells them exactly the right amount of fertilizer to apply at every stage in the plant growth.”


Figure 97: The AlgoSolis facility is offering researchers and industry an opportunity to experiment with microalgae on larger scales than before. Based in Saint-Nazaire, France, the site is a stepping stone to industrial production of algae-based products (image credit: Université de Nantes) 113)

Legend to Figure 97: Microalgae offer huge benefits because they promise many products for human use, from biofuels to oxygen and food, as well as clean contaminated water or extract carbon dioxide from the atmosphere. ESA's MELiSSA project is using algae and other organisms and chemicals to develop a compact closed ecosystem to keep astronauts alive on long missions.

Spin-off from research as if in space

Based on its initial experiments, and the results it gained from growing vegetables in closed and well-controlled environments conceptually as if in space, the company developed a scheme for horticulturists, this time with the goal of maximizing plant growth and yield through very careful use of fertilizers.

In the service now offered to growers, samples are taken every week of both the fertilizer solution dripped into the plants – including tomatoes, peppers, cucumbers, eggplant, roses and gerbera – and the liquid that drains away.

These are analyzed at the company’s laboratory and the results sent back to the growers, with advice on any changes they should make to the amounts of each of the 16 minerals given to the plants.

“There is a separate approach for each mineral, but these are also linked with each other because the uptake of certain minerals – such as potassium, magnesium and calcium – are closely related,” says Lex. “The amount of each mineral that a plant needs also varies across its lifecycle. It will need a different combination when it is producing stalks and leaves early in its life compared with when it is producing flowers and fruit.”

Horticulturalists also face challenges in altering fertilizer doses to match changing growing conditions. For example, rising energy prices have encouraged growers to keep greenhouse windows closed. However, this causes higher humidity, resulting in a fall in evaporation from plants.

That, in turn, makes it harder for tomato plants to transport calcium to the top of the plant, which can result in a condition that leaves and the plant top becomes necrotic. The company’s scheme shows growers how to compensate for this by altering not just the amount of calcium in the drop water, but also magnesium and potassium levels.

Production increase: In less than one season, Dutch customer Zwingrow has already started to see positive results from using the scheme for its crop of orange bell peppers.

“We’re always trying to improve the health and quality of the plants we grow, but using this weekly analysis means we are acting proactively, delving deeper into the needs of the plants and getting better results,” says Ted Zwinkels, co-owner of Zwingrow. “Even though we started using it after the start of the season last year, the plants grew better and were healthier. I’d estimate that overall production increased by around 5%. It’s impossible to know how much of this was due to the new regime, as variations in sunlight from year to year also play a part. However, already this season, using the service from the very start, we’ve seen stronger, better plants, and fewer vulnerable ones.”

Groen Agro Control now has clients across the world. While it still has plans for experiments on crop growth in space, it is also widening its horizons on Earth, including a potential service for crops grown outside using drop water application of fertilizers, such as asparagus.

Production of NEXT-C ion propulsion engine

• 10 April 2018: Aerojet Rocketdyne's (Redmond WA) NEXT-C ion propulsion engine has successfully cleared NASA's CDR (Critical Design Review), confirming the technology achieved all program requirements and is ready for final production of the flight units. NEXT-C (NASA's Evolutionary Xenon Thruster-Commercial) was developed by NASA and is being commercialized by Aerojet Rocketdyne. NEXT-C has 7 kW of maximum power and an Isp > 4100 s. Its high Isp (Specific Impulse) and flexible operational capabilities make NEXT ideal for scientific space missions. 114)

NEXT-C will be the ion thruster used on a 2021 mission, named DART (Double Asteroid Redirection Test), led by the Johns Hopkins University Applied Physics Laboratory for NASA. DART is a kinetic impact mission designed to collide with a moonlet around the Didymos asteroid and slightly alter its orbit. This mission will be a critical step in demonstrating NASA's impact threat mitigation capabilities for redirection of a potentially hazardous object such as an asteroid.

"Serving as the primary propulsion source for DART, NEXT-C will establish a precedent for future use of electric propulsion to enable ambitious future science missions," said Eileen Drake, CEO and President of Aerojet Rocketdyne. "Electric propulsion reduces overall mission cost without sacrificing reliability or mission success."

Under a cost-sharing agreement with NASA's Science Mission Directorate through the agency's Glenn Research Center, Aerojet Rocketdyne is developing the NEXT-C electric propulsion engine and power processing unit. In addition to DART, additional NEXT-C units may be launched on future NASA planetary missions.

New dimension in design

• 11 April 2018: An alternative to conventional circuit boards, these 3D-molded interconnect devices (Figure 98) add electrical connectivity to the surface of three-dimensional structures. The aim is to combine mechanical, electronic and potentially optical functions in a single 3D part, allowing the creation of intricate, precisely aligned designs using fewer parts while delivering significant savings in space and weight compared to conventional electronic manufacturing. 115)

“These prototype interconnect devices were produced using injection-moulded plastics incorporating electrical metallisation,” explains ESA’s Jussi Hokka. “In principle, however, other materials can also be used, allowing the incorporation of sensors or the integration of shielding or cooling systems.”


Figure 98: Illustration of 3D-molded prototype interconnect devices procuded for ESA by Art of Technology AG in Switzerland, through the Agency’s Advanced Research in the Telecommunications Systems program (image credit: ESA/Art of Technology AG)

Twisting laser light offers the chance to probe the nano-scale

• 5 April 2018: A new method to sensitively measure the structure of molecules has been demonstrated by twisting laser light and aiming it at miniscule gold gratings to separate out wavelengths. The technique could potentially be used to probe the structure and purity of molecules in pharmaceuticals, agrochemicals, foods and other important products more easily and cheaply than existing methods. 116)

Developed by physicists at the University of Bath (Bath UK), working with colleagues at the University of Cambridge and UCL (University College London), the technique relies on the curious fact that many biological and pharmaceutical molecules can be either 'left-handed' or 'right-handed'.


Figure 99: A twisted laser beam hits a nanoscopic U-shaped gold grating which further twists the beam in either a right or left-handed direction. This deflects the beam in many directions and further splits it into its constituent wavelengths across the color spectrum (image credit: University of Bath, Ventsislav Valev)

Although such molecules are built from exactly the same elements they can be arranged in mirror images of each other, and this configuration sometimes changes their properties drastically.

Notoriously the morning sickness drug Thalidomide caused birth defects and deaths in babies before it was pulled from the market in the 1960s. Investigation showed that the drug existed in two mirror images - the right-handed form was effective as a morning sickness drug, but the left-handed form was harmful to foetuses. This is one example of why testing what 'handedness', or chirality, a molecule has is essential for many valuable products.

The research team from the Centre for Photonics and Photonic Materials, and the Centre for Nanoscience and Nanotechnology at the University of Bath, used a special white-light laser built in-house and directed it through several optical components to put a twist on the beam. The twisted laser beam then hits a nano-scopic U-shaped gold grating which serves as a template for the light, further twisting the beam in either a right or left-handed direction. This deflects the beam in many directions and further splits it into its constituent wavelengths across the colour spectrum.

By carefully measuring the deflected light scientists can detect tiny differences in intensity across the spectrum which inform them about the chirality of the grating the laser beam interacts with.

The study, published in the journal Advanced Optical Materials, demonstrates the technique as a proof of principle. 117)

Christian Kuppe, the PhD student who conducted the experiments, said: "At the moment chiral sensing requires high molecular concentrations because you're looking for tiny differences in how the light interacts with the target molecule. By using our gold gratings we aim to use a much smaller amount of molecules to conduct a very sensitive test of their handedness. The next step will be to continue to test the technique with a range of well-known chiral molecules. We hope that this will become a valuable way to perform really important tests on all sorts of products including pharmaceuticals and other high-value chemicals."

Dr Ventsislav Valev, who oversaw the work, said: "There's a great deal of scientific excitement about miniaturisation and working on nano-sized dimensions at the very small scale. However, in the rush to go as small as possible, some opportunities have been overlooked. Working with chiral nano-gratings is a great example of that."

1) Arslan Raja, Nik Papageorgiou, ”Integrated photonics meet electron microscopy,” EPFL News, 23 December 2021, URL:

2) Jan-Wilke Henke, Arslan Sajid Raja, Armin Feist, Guanhao Huang, Germaine Arend, Yujia Yang, F. Jasmin Kappert, Rui Ning Wang, Marcel Moeller, Jiahe Pan, Junqiu Liu, Ofer Kfir, Claus Ropers, Tobias J. Kippenberg, “Integrated photonics enables continuous-beam electron phase modulation”, Nature, Ol. 600, pp: 653-658, Published: 23 December 2021,, URL:

3) John Greenwald, ”Scientists at PPPL and Princeton University demonstrate a novel rocket for deep-space exploration,” PPPL News, 22 December 2021, URL:

4) J. Simmonds and Y. Raitses, ”Mitigation of breathing oscillations and focusing of the plume in a segmented electrode wall-less Hall thruster,” Applied Physics Letters, Vol. 119, Published online: 22 November 2021,

5) ”Researchers Determine Optimum Pressure to Improve the Performance of Lithium Metal Batteries,” Tech Briefs, 1 December 2021, URL:

6) ”Fundamental particles modelled in beam of light,” University of Birmingham News, 22 November 2021, URL:

7) Danica Sugic, Ramon Droop, Eileen Otte, Daniel Ehrmanntraut, Franco Nori, Janne Ruostekoski, Cornelia Denz & Mark R. Dennis, ”Particle-like topologies in light,” Nature Communications, Volume 12, Article number: 6785 (2021), Published: 22 November 2021,, URL:

8) ”Pivotal Discovery of Nanomaterial for LEDs,” Tech Briefs, 24 September 2021, URL:

9) ”Lockheed Martin Develops High-Performance, Low Cost Hybrid Antenna for 5G, Radar and Remote Sensing Applications,” Lockheed Martin, 23 August 2021, URL:

10) ”Complex shapes of photons to boost future quantum technologies,” Space Daily, 06 June 2021, URL:

11) Markus Hiekkamäki and Robert Fickler, ”High-Dimensional Two-Photon Interference Effects in Spatial Modes,” Physical Review Letters, Vol. 126, 123601, Issue 12, Published: 26 March 2021,

12) ”A revolutionary method to drastically reduce stray light on space telescopes,” Science Codex, 19 May 2021, URL:

13) L. Clermont, W. Uhring & M. Georges, ”Stray light characterization with ultrafast time-of-flight imaging,” Scientific Reports, Volume 11, Published: 12 May 2021,, URL:

14) ”Graphene sensor combines temperature and magnetic measurements,” ESA Enabling & Support, 18 May 2021, URL:

15) ”Wearable Sensors that Detect Gas Leaks,” POSTECH, 15 April 2021, URL:

16) Inki Kim, Won-Sik Kim, Kwan Kim, Muhammad Afnan Ansari, Muhammad Qasim Mehmood, Trevon Badloe, Yeseul Kim, Junho Gwak, Heon Lee, Young-Ki Kim and Junsuk Rho, ”Holographic metasurface gas sensors for instantaneous visual alarms,” Science Advances, Vol. 7, No 15, eabe9943, Published: 07 April 2021, URL:

17) ”Researchers present results of experiments with atom interferometry on a sounding rocket / Further rocket missions set to follow,” Johannes Gutenberg University Press Release, Mainz, 13 April 2021, URL:

18) Maike D. Lachmann, Holger Ahlers, Dennis Becker, Aline N. Dinkelaker, Jens Grosse, Ortwin Hellmig, Hauke Müntinga, Vladimir Schkolnik, Stephan T. Seidel, Thijs Wendrich, André Wenzlawski, Benjamin Carrick, Naceur Gaaloul, Daniel Lüdtke, Claus Braxmaier, Wolfgang Ertmer, Markus Krutzik, Claus Lämmerzahl, Achim Peters, Wolfgang P. Schleich, Klaus Sengstock, Andreas Wicht, Patrick Windpassinger & Ernst M. Rasel, ”Ultracold atom interferometry in space,” Nature Communications, Volume 12, Article number: 1317 (2021), Published: 26 February 2021,, URL:

19) ”Big breakthrough for ’massless’ energy storage,” Chalmers News, 22 March 2021, URL:

20) Leif E. Asp, Karl Bouton, David Carlstedt, Shanghong Duan, Ross Harnden, Wilhelm Johannisson, Marcus Johansen, Mats K. G. Johansson, Göran Lindbergh, Fang Liu, Kevin Peuvot, Lynn M. Schneider, Johanna Xu, Dan Zenkert, ”A Structural Battery and its Multifunctional Performance,” Advanced Energy & Sustainability Research, Volume2, Issue3, March 2021, 2000093, First Published: 27 January 2021,

21) ”Move over plastic: desktop 3D printing in metal or ceramics,” ESA Enabling & Support, 25 November 2020, URL:

22) ”Shape-shifting mirror,” ESA Enabling & Support, 12 November 2020, URL:

23) ”The most sensitive optical receivers yet for space communications,” Chalmers, 2 October 2020, URL:

24) Ravikiran Kakarla, Jochen Schröder & Peter A. Andrekson, ”One photon-per-bit receiver using near-noiseless phase-sensitive amplification,” Nature: Light Science & Applications, Volume 9, Article No 153, Published: 2 September 2020,

25) ”Mesh reflector for shaped radio beams,” ESA Enabling & Support, 17 September 2020, URL:

26) ”Simple mod makes quantum states last 10,000 times longer,” Science Daily, 13 August 2020, URL:

27) Louise Lerner, ”UChicago scientists discover way to make quantum states last 10,000 times longer,” Uchigago News, 13 August 2020, URL:

28) Kevin C. Miao, Joseph P. Blanton, Christopher P. Anderson, Alexandre Bourassa, Alexander L. Crook, Gary Wolfowicz, Hiroshi Abe, Takeshi Ohshima, David D. Awschalom, ”Universal coherence protection in a solid-state spin qubit,” Science, 13 August 2020,

29) ”Photonics: From custom-built to ready-made,” EPFL News, 17 June 2020, URL:

30) ”Custom-Built to Ready-Made,” UCSB The Current, 17 June 2020, URL:

31) Boqiang Shen, Lin Chang, Junqiu Liu, Heming Wang, Qi-Fan Yang, Chao Xiang, Rui Ning Wang, Jijun He, Tianyi Liu, Weiqiang Xie, Joel Guo, David Kinghorn, Lue Wu, Qing-Xin Ji, Tobias J. Kippenberg, Kerry Vahala & John E. Bowers, ”Integrated turnkey soliton microcombs,” Nature, Volume 582, pp: 365–369(2020), Published: 17 June 2020,

32) ”Physicist creates fifth state of matter from their living room,” University of Sussex, Labnews, 22 May 2020, URL:

33) ”Scientists use light to accelerate supercurrents, access forbidden light, quantum properties,” Iowas State University, 19 May 2020, URL:

34) C. Vaswani, M. Mootz, C. Sundahl, D. H. Mudiyanselage, J. H. Kang, X. Yang, D. Cheng, C. Huang, R. H. J. Kim, Z. Liu, L. Luo, I. E. Perakis, C. B. Eom, and J. Wang, ”Terahertz Second-Harmonic Generation from Lightwave Acceleration of Symmetry-Breaking Nonlinear Supercurrents,” Physical Review Letters, Volume 124, Issue 20, Published 19 May 2020,

35) ”Ultra-thin sail could speed journey to other star systems,” ESA Science & Exploration, 19 May 2020, URL:

36) ”In search of the lighting material of the future,” Space Daily, 4 May 2020, URL:

37) Grigory Smolentsev, Christopher J. Milne, Alexander Guda, Kristoffer Haldrup, Jakub Szlachetko, Nicolo Azzaroli, Claudio Cirelli, Gregor Knopp, Rok Bohinc, Samuel Menzi, Georgios Pamfilidis, Dardan Gashi, Martin Beck, Aldo Mozzanica, Daniel James, Camila Bacellar, Giulia F. Mancini, Andrei Tereshchenko, Victor Shapovalov, Wojciech M. Kwiatek, Joanna Czapla-Masztafiak, Andrea Cannizzo, Michela Gazzetto, Mathias Sander, Matteo Levantino, Victoria Kabanova, Elena Rychagova, Sergey Ketkov, Marian Olaru, Jens Beckmann& Matthias Vogt, ”Taking a snapshot of the triplet excited state of an OLED organometallic luminophore using X-rays,” Nature Communications, Volume 11, 2131 (2020)., Published: 1 May 2020, URL:

38) ”Smart chips for space,” ESA Enabling & Support, 30 April 2020, URL:

39) ”Bendy, ultra-thin solar cell,” ESA Enabling & Support, 11 March 2020, URL:

40) ”Satellite design applied to superyacht,” ESA Enabling & Support, 27 February 2020, URL:

41) Leah Burrows, ”Controlling light with light, Researchers develop a new platform for all-optical computing,” Harvard/SEAS News, 5 February 2020, URL:

42) Derek R. Morim, Amos Meeks, Ankita Shastri, Andy Tran, Anna V. Shneidman, Victor V. Yashin, Fariha Mahmood, Anna C. Balazs, Joanna Aizenberg, Kalaichelvi Saravanamuttu, ”Opto-chemo-mechanical transduction in photoresponsive gels elicits switchable self-trapped beams with remote interactions,” PNAS, Published: 6 February 2020,

43) ”Slow light to speed up LiDAR sensors development,” Space Daily, 15 January 2020, URL:, URL:

44) Hiroyuki Ito, Yuma Kusunoki, Jun Maeda, Daichi Akiyama, Naoya Kodama, Hiroshi Abe, Ryo Tetsuya, and Toshihiko Baba, ”Wide beam steering by slow-light waveguide gratings and a prism lens,” Optica, Vol. 7, Issue 1, pp. 47-52, 14 January 2020,, URL:

45) ”World premier: first plant-powered IoT sensor sends signal to space,” Plant-e, 14 January 2020, URL:

46) ”Plant-powered sensor sends signal to space,” ESA / Applications / Telecommunications & Integrated Applications, 15 January 2020, URL:

47) ”First plant-powered IoT sensor sends signal to space,” Geospatial World, 15 January, 2020, URL:

48) Liz Do, ”Skin-like sensors bring a human touch to wearable tech,” University of Toronto Engineering News, 8 January 2020, URL:

49) Binbin Ying, Qiyang Wu, Jianyu Li, and Xinyu Liu, ”An ambient-stable and stretchable ionic skin with multimodal sensation,” Material Horizons, First Published on 11 October 2019,!divAbstract

50) ”Water drop antenna lens,” ESA Enabling & Support, Technology image of the week, 08 January 2020, URL:

51) ”Researchers build a particle accelerator that fits on a chip,”, 2 January, 2020, URL:

52) ”Stanford researchers build a particle accelerator that fits on a chip, miniaturizing a technology that can now find new applications in research and medicine,” Stanford News, 2 January 2020, URL:

53) Neil V. Sapra, Ki Youl Yang, Dries Vercruysse, Kenneth J. Leedle, Dylan S. Black, R. Joel England, Logan Su, Rahul Trivedi, Yu Miao, Olav Solgaard, Robert L. Byer, Jelena Vučković, ”On-chip integrated laser-driven particle accelerator,” Science, Vol. 367, Issue 6473, pp. 79-83, 03 January 2020,

54) Charlie Hopkins, ”Stanford Linear Particle Accelerator,” July 17, 2015, URL:

55) ”How ESA helps connect industry and spark 5G innovation,” ESA, 25 September 2019, URL:

56) ”Let there be light,” ESA, Technology image of the week: Reverse engineering, making a solar cell glow by applying electricity to it, 25 September 2019, URL:

57) ”Quantum light sources pave the way for optical circuits,” Space Daily, 5 August 2019, URL:

58) J. Klein, M. Lorke, M. Florian, F. Sigger, L. Sigl, S. Rey, J. Wierzbowski, J. Cerne, K. Müller, E. Mitterreiter, P. Zimmermann, T. Taniguchi, K. Watanabe, U. Wurstbauer, M. Kaniber, M. Knap, R. Schmidt, J. J. Finley & A. W. Holleitner, ”Site-selectively generated photon emitters in monolayer MoS2 via local helium ion irradiation,” Nature Communications, Volume 10, Article number: 2755, Published: 21 June 2019,, URL:

59) ”Driverless shuttle,” ESA Technology image of the week, 10 July 2019, URL:

60) ”New Method Can Spot Failing Infrastructure from Space,” NASA/JPL News, 09 July 2019, URL:

61) Pietro Milillo, Giorgia Giardina, Daniele Perissin, Giovanni Milillo, Alessandro Coletta and Carlo Terranova, ”Pre-Collapse Space Geodetic Observations of Critical Infrastructure: The Morandi Bridge, Genoa, Italy,” Remote Sensing, Vol. 11, (12), 1403, Published: 12 June 2019,, URL:

62) Wayne Lewis, ”Atomic motion captured in 4-D for the first time,”, 27 June 2019, URL:

63) Jihan Zhou, Yongsoo Yang, Yao Yang, Dennis S. Kim, Andrew Yuan, Xuezeng Tian, Colin Ophus, Fan Sun, Andreas K. Schmid, Michael Nathanson, Hendrik Heinz, Qi An, Hao Zeng, Peter Ercius & Jianwei Miao, ”Observing crystal nucleation in four dimensions using atomic electron tomography,” Nature, Volume 570, pages500–503, Published: 26 June2019,

64) Roadmap to a single European transport area —Towards a competitive and Resource -Efficient transport system,” European Commission, 28 March 2011, URL:

65) ”Realizing Europe’s vision for aviation - Strategic Research & Innovation Agenda, Volume 1,”ACARE ( Advisory Council for Aviation Research and Innovation in Europe, September 2012, URL:

66) ”The EU energy roadmap for 2050 aims at a 75% share of renewables in the gross energy consumption,” EU, 2019, URL:

67) Jonathan R. Scheffe,Aldo Steinfeld, ”Thermodynamic Analysis of Cerium-Based Oxides for Solar Thermochemical Fuel Production,” Energy Fuels2012, Vol.26, No 3, pp: 1928-1936, Publication Date:January 22, 2012,, URL:

68) Aldo Steinfeld, Robert Palumbo, ”Solar Thermodynamical Process Technology,” Encyclopedia of Physical Science & Technology, R. A. Meyers Ed., Academic Press, Vol. 15, pp. 237-256, 2001, URL:

69) ”From sunlight to jet fuel: EU project makes first "solar" kerosene,” EC Press Release, 28 April 2014, URL:

70) Daniel Marxer, Philipp Furler, Jonathan Scheffe, Hans Geerlings, Christoph Falter, Valentin Batteiger,Andreas Sizmann,Aldo Steinfeld, ”Demonstration of the Entire Production Chain to Renewable Kerosene via Solar Thermochemical Splitting of H2O and CO2,” Energy Fuels, 2015, Vol. 29, No 5, pp: 3241-3250, Publication Date:April 15, 2015,

71) Manuel Romero, Aldo Steinfeld, ”Concentrating solar thermal power and thermochemical fuels,” Energy & Environmental Science, Issue 11, 2012

72) Martin Roeb, Martina Neises, Nathalie Monnerie, Christian Sattlera and Robert Pitz-Paal, ”Technologies and trends in solar power and fuels,” Energy & Environmental Science, Issue 7, 2011

73) Arthur L. Robinson, with contributions by Corinna Wu, Feature Editor Aldo Steinfeld, ”Brewing fuels in a solar furnace,” MRS Bulletin, Vol. 38, Issue 3, March 2013, pp: 208-209,, URL:

74) ”European research project claims breakthrough in production of renewable jet fuels from sunlight,” Greenair, 13 June 2019, URL:

75) ”SUN-to-LIQUID produces solar kerosene from sunlight, water and carbon dioxide,” DLR, 13 June 2019, URL:

76) ”Melting a satellite, a piece at a time,” ESA, 17 June 2019, URL:

77) David Adam, ”The mysterious crystal that melts at two different temperatures,” Physics Today, 6 June 2019, URL:

78) Carlos Bernades,Marina Carravetta,Simon J. Coles,Ernst R. H. van Eck,Hugo Meekes,Manuel E. Minas da Piedade, Mateusz B. Pitak,Mike Podmore Tobian, A. H. de Ruiter, Leyla-Cann Söğütoğlu, René R. E. Steendam and Terry Threlfall, ”The Curious Case of Acetaldehyde Phenylhydrazone: Resolution of a 120 Year Old Puzzle where Forms with Vastly Different Melting Points Have the Same Structure,” ACS Publications, Crystal Growth & Design 2019 19 (2), 907-917, DOI: 10.1021/acs.cgd.8b01459, URL:

79) ”Mission Control 'Saves Science#,” ESA, 17 May 2019, URL:

80) ”Testing satellite marker designs,” ESA, Technology image of the week: Infrared and phosphorescent satellite markers could help future space servicing vehicles home in on targets, 24 April 2019, URL:

81) ”Mirror array for LSS,” ESA, Technology image of the week, 17 April 2019, URL:

82) ”Cold plasma tested on ISS,” ESA, 10 April 2019, URL:

83) ”3D printing and milling Athena optic bench,” ESA, 3 April 2019, URL:

84) ”Lockheed Martin's First Smart Satellites are Tiny with Big Missions,” Lockheed Martin, 20 March 2019, URL:

85) ”ANU research set to shake-up space missions,” ANU Research, 14 March 2019, URL:

86) Tobias Vogl, Kabilan Sripathy, Ankur Sharma, Prithvi Reddy, James Sullivan, Joshua R. Machacek, Linglong Zhang, Fouad Karouta, Ben C. Buchler, Marcus W. Doherty, Yuerui Lu & Ping Koy Lam, ”Radiation tolerance of two-dimensional material-based devices for space applications,” Nature Communications, Volume 10, Article number: 1202, Published 13 March 2019,, URL:

87) ”Light From an Exotic Crystal Semiconductor Could Lead to Better Solar Cells,” Rutgers Today, 15 March 2019, URL:

88) Hee Taek Yi, Sylvie Rangan, Boxin Tang, C. Daniel Frisbie, Robert A. Bartynski, Yuri N. Gartstein, Vitaly Podzorov, ”Electric-field effect on photoluminescence of lead-halide perovskites,” Materials Today, Online 28 January 2019,

89) ”Converting Wi-Fi Signals to Electricity with New 2-D Materials,” Tech Briefs, 8 March 2019, URL:

90) Rob Matheson,”Converting Wi-Fi Signals to Electricity with New 2-D Materials,” MIT News Office, 28 January, 2019, URL:

91) Xu Zhang, Jesús Grajal, Jose Luis Vazquez-Roy, Ujwal Radhakrishna, Xiaoxue Wang, Winston Chern, Lin Zhou, Yuxuan Lin, Pin-Chun Shen, Xiang Ji, Xi Ling, Ahmad Zubair, Yuhao Zhang, Han Wang, Madan Dubey, Jing Kong, Mildred Dresselhaus & Tomás Palacios, ”Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting,” Nature Letters, Vol. 566, pp: 368-372, Published: 28 January 2019,

92) ”Soft, flexible sensors are the first to monitor babies in the NICU with precision and without wires,” Northwestern University, 28 February 2019, URL:

93) ”Medical Design Briefs,” 7 March 2019, URL:

94) Ha Uk Chung, Bong Hoon Kim, Jong Yoon Lee, Jungyup Lee, Zhaoqian Xie, Erin M. Ibler, KunHyuck Lee, Anthony Banks, Ji Yoon Jeong, Jongwon Kim, Christopher Ogle, Dominic Grande, Yongjoon Yu, Hokyung Jang, Pourya Assem, Dennis Ryu, Jean Won Kwak, Myeong Namkoong, Jun Bin Park, Yechan Lee, Do Hoon Kim, Arin Ryu, Jaeseok Jeong, Kevin You, Bowen Ji, Zhuangjian Liu, Qingze Huo, Xue Feng, Yujun Deng, Yeshou Xu, Kyung-In Jang, Jeonghyun Kim, Yihui Zhang, Roozbeh Ghaffari, Casey M. Rand, Molly Schau, Aaron Hamvas, Debra E. Weese-Mayer, Yonggang Huang, Seung Min Lee, Chi Hwan Lee, Naresh R. Shanbhag, Amy S. Paller, Shuai Xu, John A. Rogers, ”Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care,” Science, Vol. 363, Issue 6430, eaau0780, 01 March 2019, URL:

95) ”An Introduction to 5G Technology,” URL:

96) ”The Truth About 5G: What's Coming (and What's Not) in 2019,” tom's guide, 25 February 2019, URL:,review-5063.html

97) Antonio Bove, ”Satellite and the 5G Revolution: SES Leads the Charge,” 21 June 2019, URL:

98) ”Space's part in the 5G revolution,” ESA, 6 March 2019, URL:

99) Lori Keesey, Lynn Jenner, ”NASA to Advance Unique 3D Printed Sensor Technology,” NASA Space Tech, 15 February 2019, URL:

100) Lori Keesey, Lynn Jenner, ”NASA-Industry Team Creates and Demonstrates First Quantum Sensor for Satellite Gravimetry,” NASA, 20 December 2018, URL:


102) ”Northrop Grumman, DARPA Set New Standard for Wireless Transmission Speed,” Northrop Grumman News room, 22 August 2018, URL:

103) ”Virginia Tech researchers develop novel process to 3D print one of the strongest materials on Earth,” Virginia Tech, 15 August 2018, URL:

104) Ryan M. Hensleigh, Huachen Cui, James S. Oakdale, Jianchao C. Ye, Patrick G. Campbell, Eric B. Duoss, Christopher M. Spadaccini, Xiaoyu Zheng, Marcus A. Worsley, ”Additive manufacturing of complex micro-architected graphene aerogels,” Material Horizons, The Royal Society of Chemistry 2018, DOI: 10.1039/c8mh00668g, First published on 13th August 2018, URL:

105) ”Prototype nuclear battery packs 10 times more power,”, 1 June 2018, URL:

106) V. S. Bormashov, S. Yu. Troschiev, S. A. Tarelkin, A. P. Volkov, D. V. Teteruk, A. V. Golovanov, M. S. Kuznetsov, N. V. Kornilov, S. A. Terentiev, V. D. Blank, ”High power density nuclear battery prototype based on diamond Schottky diodes,” Science Direct, Diamond and Related Materials, Volume 84, April 2018, pp: 41-47,

107) ”Kilopower: What’s Next?,” NASA, 17 January 2018, URL:

108) ”The Fission System Gateway to Abundant Power for Exploration,” NASA Facts, Space Technology Game Changing Development, 18 January 2018, URL:

109) ”Demonstration Proves Nuclear Fission System Can Provide Space Exploration Power,” NASA Release 18-031, 2 May 2018, URL:

110) Marc A. Gibson, Steven R. Oleson, David I. Poston, Patrick McClure, ”NASA’s Kilopower Reactor Development and the Path to Higher Power Missions,” NASA, 2018, URL:

111) ”NASA to Discuss Demonstration of New Space Exploration Power System,” NASA, 18 April 2018, URL:

112) ” Top tomatoes thanks to Mars missions,” ESA Technology Transfer, 11 April 2018, URL:

113) ”AlgoSolis,” ESA, 22 March 2016, URL:

114) ”NEXT-C Advanced Electric Propulsion Engine Cleared to Begin Production,” Aerojet Rocketdyne, 10 April 2018 . URL:

115) ”ESA Technology image of the week: A 3D alternative to conventional circuit boards for space,” 9 April 2018, URL:

116) ”Twisting laser light offers the chance to probe the nano-scale,” University of Bath, 5 April 2018, URL:

117) Christian Kuppe, Calum Williams, Jie You, Joel T. Collins, Sergey N. Gordeev, Timothy D. Wilkinson, Nicolae‐Coriolan Panoiu, Ventsislav K. Valev, ”Circular Dichroism in Higher‐Order Diffraction Beams from Chiral Quasiplanar Nanostructures,” Advanced Optical Materials, Vol. 0, Issuse 0, First published: 27 March 2018,

The information compiled and edited in this article was provided by Herbert J. Kramer from his documentation of: ”Observation of the Earth and Its Environment: Survey of Missions and Sensors” (Springer Verlag) as well as many other sources after the publication of the 4th edition in 2002. - Comments and corrections to this article are always welcome for further updates (


    Integrated photonics meet electron microscopy
Scientists demonstrate a novel rocket for deep-space exploration Optimum Pressure to Improve the Performance of Lithium Metal Batteries Fundamental particles modelled in beam of light
Pivotal Discovery of Nanomaterial for LEDs Lockheed Martin Invents New Satellite Dish Technology Complex shapes of photons to boost future quantum technologies
A revolutionary method to drastically reduce stray light on space telescopes Graphene sensor combines temperature and magnetic measurements Wearable Sensors that Detect Gas Leaks
Atom interferometry demonstrated in space for the first time Energy Storage Technology Move over plastic: desktop 3D
printing in metal or ceramics
Shape-shifting mirror The most sensitive optical
receivers yet for space communications
Mesh reflector for shaped
radio beams - ESA's AMPER Project
Quantum technology: Simple mod
makes quantum states last 10,000 times longer
Photonics: From custom-built
to ready-made
Physicist creates fifth state
of matter from their living room
Scientists use light to
accelerate supercurrents, access
forbidden light, quantum properties
Ultra-thin sail could speed
journey to other star systems
Lighting material of the future
Smart chips for space Flexible, ultra-thin solar cell Satellite design applied
to superyacht
Controlling light with light Slow light to speed up
LiDAR sensors development
First plant-powered IoT
sensor sends signal to space
Skin-like sensors - wearable tech Water drop antenna lens Particle accelerator that fits on a chip
ESA helps industry for
5G innovation
Glowing solar cell Quantum light sources
pave the way for optical circuits
Driverless shuttle New Method Can Spot Failing
Infrastructure from Space
Atomic motion captured
in 4-D for the first time
SUN-to-LIQUID Melting satellites The mysterious crystal that melts
at two different temperatures
Mission Control 'Saves Science' Testing satellite marker designs Mirror array for LSS
Cold plasma tested on ISS 3D printing and milling Athena optic bench SmartSat architecture in spacecraft
Radiation tolerance of 2D
meterial-based devices
Better Solar Cells Converting Wi-Fi Signals to Electricity
Neonatal Intensive Care Units Introduction of 5G
communication connectivity
Unique 3D printed sensor technology
New Geodesy Application for Emerging Atom-Optics Technology Wireless transmission at 100 Gbit/s 3D printing one of the strongest materials on Earth
Prototype nuclear battery packs The Kilopower Project of NASA Top Tomatoes - Mars Missions
NEXT-C ion propulsion engine New dimension in design Lasers Probing the nano-scale
  References Back to Top